• Title/Summary/Keyword: support optimization

Search Result 765, Processing Time 0.021 seconds

A study on a ballast optimization algorithm for onboard decision support system (선내탑재 의사결정지원 시스템을 위한 발라스트 최적화 알고리즘에 관한 연구)

  • Shin Sung-Chul
    • Journal of Navigation and Port Research
    • /
    • v.29 no.10 s.106
    • /
    • pp.865-870
    • /
    • 2005
  • Because there are only a limited number of means of action that are available for the master to pursue in the event of flooding, onboard decision support system has been required. The majority of systems activated during a flooding emergency (such as watertight and semi-watertight doors, bulkhead valves, dewatering pumps etc.) almost exclusively aim to restore a sufficiently high level of subdivision to prevent flooding from spreading through the ship. Even though assuming the flooding scenario is not catastrophic, the use of ballast tanks can be an additional and very effective tool to ensure both prevention of flooding spreading and also improve ship stability. This paper describes an optimization algorithm devised to choose the set of ballast tanks that should be filled in order to achieve an optimal response to a flooding accident.

Route Optimization Scheme in Nested NEMO Environment based on Prefix Delegation (프리픽스 할당에 기반한 중첩된 NEMO 환경에서의 경로최적화 기법)

  • Rho, Kyung-Taeg;Kang, Jeong-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.5
    • /
    • pp.95-103
    • /
    • 2008
  • The Network Mobility (NEMO) basic support protocol extends the operation of Mobile IPv6 to provide uninterrupted Internet connectivity to the communicating nodes of mobile networks. The protocol is not efficient to offer delays in data delivery and higher overheads in the case of nested mobile networks because it uses fairly sub-optimal routing and multiple encapsulation of data packets. In this paper, our scheme combining Hierarchical Mobile IPv6 (HMIPv6) functionality and Hierarchical Prefix Delegation (HPD) protocol for IPv6, which provide more effective route optimization and reduce packet header overhead and the burden of location registration for handoff. The scheme also uses hierarchical mobile network prefix (HMNP) assignment and tree-based routing mechanism to allocate the location address of mobile network nodes (MNNs) and support micro-mobility and intra-domain data communication. The performance is evaluated using NS-2.

  • PDF

On NeMRI-Based Multicasting for Network Mobility (네트워크 이동성을 고려한 NeMRI 기반의 멀티캐스트 라우팅 프로토콜)

  • Kim, Moon-Seong;Park, Jeong-Hoon;Choo, Hyun-Seung
    • Journal of Internet Computing and Services
    • /
    • v.9 no.2
    • /
    • pp.35-42
    • /
    • 2008
  • Mobile IP is a solution to support mobile nodes, however, it does not handle NEtwork MObility (NEMO). The NEMO Basic Support (NBS) protocol ensures session continuity for all the nodes in the mobile network. Since the protocol is based on Mobile IP, it inherits the same fundamental problem such as tunnel convergence, when supporting the multicast for NEMO. In this paper, we propose the multicast route optimization scheme for NEMO environment. We assume that the Mobile Router (MR) has a multicast function and the Nested Mobile Router Information (NeMRI) table. The NeMRI is used to record o list of the CoAs of all the MRs located below it. And it covers whether MRs desire multicast services. Any Route Optimization (RO) scheme can be employed here for pinball routing. Therefore, we achieve optimal routes for multicasting based on the given architecture. We also propose cost analytic models to evaluate the performance of our scheme. We observe significantly better multicast cost in NEMO compared with other techniques such as Bi-directional Tunneling, Remote Subscription, and Mobile Multicast based on the NBS protocol.

  • PDF

A Study on Efficient Handover Scheme using Pre-authentication and Route Optimization in PMIPv6 (PMIPv6에서 사전 인증 기법과 경로 최적화를 이용한 효율적인 핸드오버 기법에 관한 연구)

  • Kim, Seong-Chul;Moon, Il-Young;Cho, Sung-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1117-1124
    • /
    • 2010
  • PMIPv6 is a network-based mobility support scheme, proposed and standardized by NetLMM WG of IETF. It is proposed to solve problems of conventional mobility schemes, and to improve inefficiency of those. The standard document describes network components and detailed procedures to provide mobility to MN. But it describes only a handover procedure between MAGs, not between LMAs. In order to support seamless connectivity of MN efficiently, a handover procedure between LMAs is necessary. The proposed scheme in this paper utilizes a route optimization procedure to prevent inefficiency of inter-LMA tunneling scheme. At the same time, the proposed scheme utilizes a pre-authentication scheme to reduce handover latency. According to the result of performance evaluations, the proposed scheme greatly reduces handover latency, compared to conventional mobility support schemes.

A study on a ballast optimization algorithm for onboard decision support system (선내탑재 의사결정지원 시스템을 위한 발라스트 최적화 알고리즘에 관한 연구)

  • Shin Sung-Chul
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.75-80
    • /
    • 2005
  • Because there are only a limited number of means of action that are available for the master to pursue in the event of flooding, onboard decision support system has been required The majority of systems activated during a flooding emergency (such as watertight and semi-watertight doors, bulkhead valves, dewatering pumps etc.) almost exclusively aim to restore a sufficiently high level of subdivision to prevent flooding from spreading through the ship. Even though assuming the flooding scenario is not catastrophic, the use of ballast tanks can be an additional and very effective tool to ensure both prevention of flooding spreading and also improve ship stability. This paper describes an optimization algorithm devised to choose the set of ballast tanks that should be filled in order to achieve an optimal response to a flooding accident.

  • PDF

Optimal EEG Channel Selection using BPSO with Channel Impact Factor (Channel Impact Factor 접목한 BPSO 기반 최적의 EEG 채널 선택 기법)

  • Kim, Jun-Yeup;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.774-779
    • /
    • 2012
  • Brain-computer interface based on motor imagery is a system that transforms a subject's intention into a control signal by classifying EEG signals obtained from the imagination of movement of a subject's limbs. For the new paradigm, we do not know which positions are activated or not. A simple approach is to use as many channels as possible. The problem is that using many channels causes other problems. When applying a common spatial pattern (CSP), which is an EEG extraction method, many channels cause an overfit problem, in addition there is difficulty using this technique for medical analysis. To overcome these problems, we suggest a binary particle swarm optimization with channel impact factor in order to select channels close to the most important channels as channel selection method. This paper examines whether or not channel impact factor can improve accuracy by Support Vector Machine(SVM).

Design and Optimization of Vibration-resistant and Heat-insulating Support Structure of Fuel Cylinder for LNG Vehicles (차량용 LNG 연료 용기의 내진동 단열지지구조 설계 및 최적화)

  • Kwon, Hyun-Wook;Hwang, In-Cheol
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.5
    • /
    • pp.6-11
    • /
    • 2014
  • To optimize the design of fuel cylinder for LNG vehicles, we introduced the design parameters of the inner and the outer tank of the vessel support structure by analyzing the structural characteristics of conventional design. We selected the inner and outer diameter of the hollow support bars and a dimension of the inner structure of the vessel among the design parameters for design optimization. In this study the temperature distribution and thermal stress of the support structure were evaluated by using the utility program as MSC/MARC. The evaluation criteria are first mode natural frequency, total transferred energy through support structure and thermal stress. The developed design satisfied the design criteria and it was made of prototype. The prototype was verified through three-dimensional vibration testing and thermal performance test.

Compiler Analysis Framework Using SVM-Based Genetic Algorithm : Feature and Model Selection Sensitivity (SVM 기반 유전 알고리즘을 이용한 컴파일러 분석 프레임워크 : 특징 및 모델 선택 민감성)

  • Hwang, Cheol-Hun;Shin, Gun-Yoon;Kim, Dong-Wook;Han, Myung-Mook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.537-544
    • /
    • 2020
  • Advances in detection techniques, such as mutation and obfuscation, are being advanced with the development of malware technology. In the malware detection technology, unknown malware detection technology is important, and a method for Malware Authorship Attribution that detects an unknown malicious code by identifying the author through distributed malware is being studied. In this paper, we try to extract the compiler information affecting the binary-based author identification method and to investigate the sensitivity of feature selection, probability and non-probability models, and optimization to classification efficiency between studies. In the experiment, the feature selection method through information gain and the support vector machine, which is a non-probability model, showed high efficiency. Among the optimization studies, high classification accuracy was obtained through feature selection and model optimization through the proposed framework, and resulted in 48% feature reduction and 53 faster execution speed. Through this study, we can confirm the sensitivity of feature selection, model, and optimization methods to classification efficiency.

ROHMIP : Route Optimization Employing HMIP Extension for Mobile Networks (ROHMIP : 이동망에서 확장된 HMIP를 적용한 경로 최적학)

  • Rho, Kyung-Taeg;Jung, Soo-Mok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.235-242
    • /
    • 2007
  • Network Mobility Basic Support protocol reduces location-update signaling by making network movements transparent to the mobile nodes (MNs) behind the mobile router (MR), but causes some problems such as sub-optimal routing and multiple encapsulations. This paper proposes an Route Optimization Employing HMIP Extension for Mobile Networks (ROHMIP) scheme for nested nubile networks support which introduces HMIP concept with relation information between MNNs behind a MR and the MR in order to localize handoff, to optimize routing and especially reduce handoff signal overhead. With ROHMIP, a mobile network node (MNN) behind a MR performs route optimization with a correspondent node (CN) as the MR sends a binding update message (BU) to mobility anchor point (MAP) via root-MR on behalf of all active MNNs when the mobile network moves. This paper describes the new mechanisms and provides simulation results which indicate that our proposal reduces transmission delay, handoff latency and signaling overhead.

  • PDF

Reliability-based Optimization for Rock Slopes

  • Lee, Myung-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1998.05a
    • /
    • pp.3-34
    • /
    • 1998
  • The stability condition of rock slopes is greatly affected by the geometry and strength parameters of discontinuities in the rock masses. Rock slopes Involving movement of rock blocks on discontinuities are failed by one or combination of the three basic failure modes-plane, wedge, and toppling. In rock mechanics, practically all the parameters such as the joint set characteristics, the rock strength properties, and the loading conditions are always subject to a degree of uncertainty. Therefore, a reasonable assessment of the rock slope stability has to include the excavation of the multi-failure modes, the consideration of uncertainties of discontinuity characteristics, and the decision on stabilization measures with favorable cost conditions. This study was performed to provide a new numerical model of the deterministic analysis, reliability analysis, and reliability-based optimization for rock slope stability. The sensitivity analysis was carried out to verify proposed method and developed program; the parameters needed for sensitivity analysis are design variables, the variability of discontinuity properties (orientation and strength of discontinuities), the loading conditions, and rock slope geometry properties. The design variables to be optimized by the reliability-based optimization include the cutting angle, the support pressure, and the slope direction. The variability in orientations and friction angle of discontinuities, which can not be considered in the deterministic analysis, has a greatly influenced on the rock slope stability. The stability of rock slopes considering three basic failure modes is more influenced by the selection of slope direction than any other design variables. When either plane or wedge failure is dominant, the support system is more useful than the excavation as a stabilization method. However, the excavation method is more suitable when toppling failure is dominant. The case study shows that the developed reliability-based optimization model can reasonably assess the stability of rock slopes and reduce the construction cost.

  • PDF