• Title/Summary/Keyword: support leg

Search Result 156, Processing Time 0.024 seconds

Postural stability test of double leg support and single limb stance (양발로 선 자세와 한발로 선 자세의 자세안정도 검사)

  • Kwon, Mi-Ji
    • Journal of Korean Physical Therapy Science
    • /
    • v.5 no.4
    • /
    • pp.851-860
    • /
    • 1998
  • The purpose of this study was to quantitatively observe changes in postural stability of double leg support and single limb stance. Thirty-six healthy subjects participated in the study. Postural stability were examined using Dynamic Balance System. Each trial was 25 sec in duration. Each of 6 conditions{double leg support and single limb stance ; eyes open in stable platform, eyes closed in stable platform, eyes open in dynamic platform) evaluated effect of visual, vestibular, proprioceptive system. Center of balance found for displacement to the left along the X axis in double leg support and to the forward on left toe in single limb stance. Sway index was the lowest in double leg support with eyes open in stable platform and the higher in single limb stance with eyes closed in stance platform. We believe that reliable and valid measures should be used to determine the contributing factors of our client's postural problems so that we can design the most effective treatment possible.

  • PDF

Body Impedance Control for Walking Stabilization of a Quadrupedal Robot (4족 보행 로봇의 걸음새 안정화를 위한 몸체 임피던스 제어)

  • Lee, Soo-Yeong;Hong, Ye-Seon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.5
    • /
    • pp.257-263
    • /
    • 2000
  • One of the basic assumptions in the static gait design for a walking robot is that the weight of leg should be negligible compared to that of body, so that the total gravity center is not affected by swing of a leg. Based on the ideal assumption of zero leg-weight, conventional static gait has been simply designed for the gravity center of body to be inside the support polygon, consisting of each support leg's tip position. In case that the weight of leg is relatively heavy, however, while the gravity center of body is kept inside the support polygon, the total gravity center of walking robot can be out of the polygon due to weight of a swinging leg, which causes instability in walking. Thus, it is necessary in the static gait design of a real robot a compensation scheme for the fluctuation in the gravity center. In this paper, a body impedance control is proposed to obtain the total gravity center based on foot forces measured from load cells of a real walking robot and to adjust its position to track the pre-designed trajectory of the corresponding ideal robot's body center. Therefore, the walking stability is secured even in case that the weight of leg has serious influence on the total gravity center of robot.

  • PDF

A Study of Stable Walking Analysis for Humanoid Robot (휴머노이드 로봇의 안정 보행 동작 해석에 관한 연구)

  • Sung, Yu-Kyoung;Kong, Jung-Shik;Lee, Bo-Hee;Kim, Jin-Geol;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.404-407
    • /
    • 2003
  • In this paper, we have designed the humanoid robot's leg parts with 12 D.O.F. This robot uses ankle's joints to confirm stability of walking performance. It is less movable to use ankle's joints than to do upper body's balancing joints like IWR-III, which needs three parts of via points, support leg, swing leg and balancing joints. Instead, the proposed humanoid robot needs support leg and swing leg via points. ZMP(Zero Moment Point) is utilized to guarantee the stability of robot's walking. The humanoid robot uses the ankle's joints to compensate for IWR-III's balancing joints movement. Actually we concern about a motor performance when making a real humanoid robot. So a simulator is employed to know each joint torque of humanoid robot. This simulator needs D-H(Denavit-Hartenberg) parameters, robot's mass property and two parts of via points. The simulation results are robot's walking trajectories and each motor torque. Using the walking trajectories, we can see the robot's walking scene with 3D simulator. Before we develop the humanoid robot, simulation of the humanoid robot's walking performance is very helpful. And the torque data will be used to make humanoid's joint module.

  • PDF

The Different Muscle Activation of Upper Extremity and Core Muscle by the Changes of Leg Support Surface during Push-up Exercise

  • Kim, Sun-Uk;Kim, Seong-Bin;Yeo, Sang-Seok
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.3
    • /
    • pp.195-200
    • /
    • 2016
  • Purpose: This study was designed to evaluate the effects of the different condition of leg support surface on the upper extremity and core muscle activity during the push-up exercise. Methods: Fifteen healthy subjects that were practicable push-ups were recruited in this study. Subjects were instructed the push-up exercise in the different condition of the leg support surface. Each condition of support surface was set to the high and lower, and the unstable and stable condition. Muscle activation was measured by using the surface electromyography (EMG), and recorded from the triceps brachii, serratus anterior, latissimus dorsi, rectus abdominis, abdominal external oblique, and erector spinea muscle. Results: In the results of experiments, there was no significant difference of muscle activation in upper extremity between the high unstable and high stable support surface. By contrast, muscle activation of the rectus abdominis and abdominal external oblique was significantly higher in the low unstable support surface, compared with those of the low stable support surface. It is well known that the core muscle was important to stabilization of trunk stability. Conclusion: This result demonstrates that the low and unstable support surface for the lower extremity was suited for training of core muscle for trunk stabilization during the push-up exercise.

Effect of Single Leg Stance Training According to Different Support Surfaces on Walking Speed and Balance in Patients with Chronic Hemiplegia (지지면에 따른 마비 측 한 발 서기 훈련이 만성 편마비 환자의 보행속도와 균형에 미치는 효과)

  • Kim, Myungchul;Lee, Hongjun
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.3
    • /
    • pp.143-151
    • /
    • 2020
  • Purpose: This study aimed to investigate the effect of single-leg stance training according to different support surfaces on walking speed and balance in patients with chronic hemiplegia. Methods: Twenty-two patients with chronic stroke were randomly categorized into an experimental group (11 patients) and a control group (11 patients). In the experimental group, single-leg stance training was performed on an unstable surface after 50 min of general physical therapy. In the control group, single-leg stance training was performed on a stable surface after 50 min of general physical therapy. All participants performed five sets of single-leg stance exercises per minute and rested for 3 min. The intervention was performed 5 times a week for 4 weeks, and each patient was evaluated using the Berg Balance Scale (BBS), Fugl-Meyer Assessment Scale (FMA), and difference in walking speed between the first and last day of the intervention. Results: Compared to baseline measurements, both study groups showed significant increases in FMA, BBS, and walking speed (p<.05) after the intervention. However, there was no statistically significant difference (p>.05) between the experimental and control groups. However, in the experimental group, the increases in FMA, BBS, and walking speed were 3.36 %, 9.50 %, and 7.71 %, respectively. In the control group, the increases in FMA, BBS, and walking speed were 2.39 %, 6.65 %, and 7.64 %. Conclusion: Single-leg stance training on different support surfaces could help improve walking ability and balance in patients with chronic hemiplegia.

Effects of a Closed Chain Movement of the Support Surface on the Balance of Adults (지지면에 따른 닫힌 사슬운동이 성인의 균형에 미치는 영향)

  • Moon, Sung-Gi;Lee, Sang-Ho
    • The Journal of Korean Society for Neurotherapy
    • /
    • v.22 no.3
    • /
    • pp.19-23
    • /
    • 2018
  • Purpose The purpose of this study was to investigate the change of balance ability by performing closed chain exercise on stable support surface and unstable support surface in twenties. Methods This study randomly selected 15 students in the closed chain exercise group on the stable support side and 15 on the closed chain exercise group on the unstable support side. Balance ability was measured before and after the start of exercise and static balance was measured by OLT(One Leg Standing Test) and FRT (Functional Reach Test). Result The changes of the function reach test of the closed chain movement according to the ground type were significant in the unstable and stable support surfaces and the change of function reach test after the intervention in the two groups was significantly improved compared with the closed chain movement respectively. The one leg standing test changes of the closed chain movement according to the ground type showed significant results on the unstable and stable support surfaces, but there was no significant difference in the one leg standing test changes after intervention between the two groups. Conclusion The effect of closed chain training on ground type is unstable. The change of function reach test and one leg standing test of the closed chain exercise group on the stable support surface resulted in significant changes after exercise, but there was a significant difference in the balance ability of function reach test change after intervention between the groups.

Rectus Femoris Action Potentials under 4 Positions during Straight Leg Raising (하지거상운동시 자세변화에 따른 대퇴직근의 활동전위)

  • Kim, Ho-Sung;Yu, Chang-Joon;Hong, Seung-Ho;Current, Marion E.
    • Physical Therapy Korea
    • /
    • v.2 no.1
    • /
    • pp.44-50
    • /
    • 1995
  • The purpose of this study was to investigate which of 4 positions produced the highest action potential in the rectus femoris muscle of normal adult subjects. Testing was performed in supine with the right leg performing a simple straight leg raise with the knee fully extended. The left leg, however, was placed in 4 different positions: 1. Full support with $0^{\circ}$ flexion. 2. Flexed on the plinth with $60^{\circ}$ knee flexion and foot flat. 3. Same as N0.2 but with $90^{\circ}$ knee flexion. 4. Left leg hanging over the end of the plinth with $90^{\circ}$ knee flexion, $0^{\circ}$ hip flexion and no foot support. This study was designed to compare the level of electromyographic activity of the rectus femoris under 4 positions. Fourty-three healthy young adults performed three trials of each exercise condition in random order in the supine position. Electromyographic activity was recorded from surface electrodes. Rectus femoris action potentials in all 4 positions were significantly different. The highest action potential at the end of movement of the right leg occurred with the left leg hanging over the end of the plinth with $90^{\circ}$ knee flexion. It is therefore recommended the straight leg raising be performed with the contralateral leg flexed at $90^{\circ}$ over the end of the supporting surface to obtain a maximum rectus femoris isometric contraction.

  • PDF

Structural Weld Strength Analysis on Door Hinge of Field Artillery Ammunition Support Vehicle (자주포용 탄약 운반 궤도차량 도어힌지 용접부 구조강도 해석)

  • Kang, Hyeon-Je;Kim, Byeong-Ho;Kim, Byung-Hyun;Seo, Jae-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.58-65
    • /
    • 2016
  • This study analyzed the structural weld strength for a door hinge for a field artillery ammunition support vehicle. In order to determine the optimal conditions, we measured the modal analysis and analyzed the leg length of a rear door hinge. From these methods, we acquired the vibration frequency of normal mode and the optimal welding leg length conditions. It was possible to obtain a structural stability for a rear door hinge of the field artillery ammunition support vehicle. In the future, this should be used as a reference source for the weld strength analysis of high vibration and high weight structures for another welding system design.

Kinematical Analysis of Projection Factors to Record Difference dur ing Women's Javelin Throwing (여자 창던지기 시 기록 차이에 따른 투사요인의 운동학적 분석)

  • Park, Jae-Myoung;Yoon, Seok-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.457-467
    • /
    • 2010
  • This study intends to analyze the projection factors' difference on each record of women's javelin throwing. For this purpose, the research analyzed the best record and the lowest one of athletes in top 1~7 ranks respectively, who participated in 2009 Daegu Pre-Championship Meeting. For analyze kinematic factors, we analyzed their game photos mainly shot by 3 cameras installed in side places. The used analysis program was Kwon3D 3.1. Analysis variables were the projection velocity, angle, height, trunk lean angle, and supporting leg's knee angle. The results concluded as follows: Different record showed statistically significant differences(p<.05) in terms of horizontal velocity and resultant velocity. There were no statistically significant differences in the variables of projection angle, its height, trunk lean angle and knee angle of support leg. But for the analyzed results to each individual characteristics, the horizontal velocity, projection height, knee angle of support leg and trunk lean angle of release event appeared to have influence on record.

Effects of Balance Taping Therapy for Elders with Leg Pain (밸런스 테이핑 요법이 노인의 다리통증에 미치는 효과)

  • Park, Kyung-Sook;Park, Ka-Yoon;Ryoo, Eon-Na
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.15 no.1
    • /
    • pp.45-52
    • /
    • 2008
  • Purpose: The purpose of this study was to examine the effects of balance taping for elders suffering from leg pain. Method: This study was a nonequivalent pretest-posttest design, quasi-experimental study. There were 25 elders in the experimental group and 25 in the control group. The degree of leg pain was measured three times. Results: In the experimental group, the leg pain score before taping was 6.28, but 1 hour after the taping was applied it was 3.24, and at 24 hours after the taping was applied, 2.16. The leg pain score for elders in the experimental group decreased significantly but for those in the control group, it hardly changed. Conclusion: The findings of this study support the conclusion that balance taping may benefit individuals with leg pain. Also, balance taping therapy can be used as an independent nursing intervention.

  • PDF