• Title/Summary/Keyword: supply ripple cancellation

Search Result 4, Processing Time 0.015 seconds

High PSRR Low-Dropout(LDO) Regulator (높은 PSRR을 갖는 Low-Dropout(LDO) 레귤레이터)

  • Kim, In-Hye;Roh, Jeong-Jin
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.318-321
    • /
    • 2016
  • As IoT industry are growing fast, The importance of power management system is also being magnified. CMOS High power-supply rejection ratio(PSRR) Low-dropout(LDO) regulator is achieved by the proposed ripple Subtractor, Feed-forward capacitor and OTA in this paper. The LDO is implemented in $0.18-{\mu}m$ CMOS technology. With the proposed structures, in the maximum loading of 40mA, Simulation result achieves PSRR of -73.4dB at 500kHz and PSRR better than -40dB when frequency is below 10MHz with $6.8-{\mu}F$ output capacitor.

High-Frequency PSR-Enhanced LDO regulator Using Direct Compensation Transistor (직접 보상 트랜지스터를 사용하는 고주파 PSR 개선 LDO 레귤레이터)

  • Yun, Yeong Ho;Kim, Daejeong;Mo, Hyunsun
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.722-726
    • /
    • 2019
  • In this paper, we propose a low drop-out (LDO) regulator with improved power-supply rejection (PSR) characteristics in the high frequency region. In particular, an NMOS transistor with a high output resistance is added as a compensation circuit to offset the high frequency noise passing through the finite output resistance of the PMOS power switch. The elimination of power supply noise by the compensating transistor was explained analytically and presented as the direction for further improvement. The circuit was fabricated in a $0.35-{\mu}m$ standard CMOS process and Specter simulations were carried out to confirm the PSR improvement of 26 dB compared to the conventional LDO regulator at 10 MHz.

Multi-Phase Buck Converter with Fast Transient Response (빠른 응답을 갖는 멀티페이스 벅 변환기)

  • Lee, Yoon-Jae;Roh, Jeongjin
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.314-317
    • /
    • 2016
  • Recently, efforts to maximize battery life in progress with an increase in the demand for portable devices. In this paper, we propose multi-phase buck converter with fast transient response. Multi-phase buck converter may be used for the output capacitor of small size because the ripple cancellation effect, it is possible to use an inductor having an inductance less. The portable device for quick change from standby mode to active 4-phase design structure was given a fast transient response. The proposed multi-phase buck converter was fabricated using a 0.18 um CMOS process and the supply voltage ranges from 2.7V to 3.3V, the maximum load current is 500mA and settling time is 10us.

Reduction of Conducted Emission in Interleaved RPWM Buck Converter (인터리브드 RPWM Buck 컨버터의 전도성 노이즈 감소에 대한 연구)

  • Lee, Seunghyun;Lee, Keunbong;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.298-308
    • /
    • 2017
  • This paper presents a Interleaved Buck Converter(IBC) system with Random PWM to reduce electromagnetic noise by harmonics. Swithced mode power supply generally controlled by high switching frequency have a electromagnetic interference(EMI) issue due to the high-voltage/high-current switching to regulate the voltage in buck converter. To solve the problem. we present a novel IBC system with PRBS. IBC system has two active switches with 180 phase difference that controll the cicuit with two PWM signal. IBC system may be disadventageous for the cost due to the addtion of one set of switch, but it has adventages of power distribution, current ripple cancellation, fast transient response, and passive component size reduction. To verify the validity of study, simulation program has been bulit using PSIM and the experimental results of IBC system using RPWM was compared with the conventinal PWM and randomized PWM.