• Title/Summary/Keyword: supervised learning

Search Result 769, Processing Time 0.026 seconds

The Analysis of Semi-supervised Learning Technique of Deep Learning-based Classification Model (딥러닝 기반 분류 모델의 준 지도 학습 기법 분석)

  • Park, Jae Hyeon;Cho, Sung In
    • Journal of Broadcast Engineering
    • /
    • v.26 no.1
    • /
    • pp.79-87
    • /
    • 2021
  • In this paper, we analysis the semi-supervised learning (SSL), which is adopted in order to train a deep learning-based classification model using the small number of labeled data. The conventional SSL techniques can be categorized into consistency regularization, entropy-based, and pseudo labeling. First, we describe the algorithm of each SSL technique. In the experimental results, we evaluate the classification accuracy of each SSL technique varying the number of labeled data. Finally, based on the experimental results, we describe the limitations of SSL technique, and suggest the research direction to improve the classification performance of SSL.

A Study on Pattern Recognition with Self-Organized Supervised Learning (자기조직화 교사 학습에 의한 패턴인식에 관한 연구)

  • Park, Chan-Ho
    • The Journal of Information Technology
    • /
    • v.5 no.2
    • /
    • pp.17-26
    • /
    • 2002
  • On this paper, we propose SOSL(Self-Organized Supervised Learning) and it's architecture SOSL is hybrid type neural network. It consists of several CBP (Component Back Propagation) neural networks, and a modified PCA neural networks. CBP neural networks perform supervised learning procedure in parallel to clustered and complex input patterns. Modified PCA networks perform it's learning in order to transform dimensions of original input patterns to lower dimensions by clustering and local projection. Proposed SOSL can effectively apply to neural network learning with large input patterns results in huge networks size.

  • PDF

Breast Cancer Classification in Ultrasound Images using Semi-supervised method based on Pseudo-labeling

  • Seokmin Han
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.124-131
    • /
    • 2024
  • Breast cancer classification using ultrasound, while widely employed, faces challenges due to its relatively low predictive value arising from significant overlap in characteristics between benign and malignant lesions, as well as operator-dependency. To alleviate these challenges and reduce dependency on radiologist interpretation, the implementation of automatic breast cancer classification in ultrasound image can be helpful. To deal with this problem, we propose a semi-supervised deep learning framework for breast cancer classification. In the proposed method, we could achieve reasonable performance utilizing less than 50% of the training data for supervised learning in comparison to when we utilized a 100% labeled dataset for training. Though it requires more modification, this methodology may be able to alleviate the time-consuming annotation burden on radiologists by reducing the number of annotation, contributing to a more efficient and effective breast cancer detection process in ultrasound images.

Weakly-supervised Semantic Segmentation using Exclusive Multi-Classifier Deep Learning Model (독점 멀티 분류기의 심층 학습 모델을 사용한 약지도 시맨틱 분할)

  • Choi, Hyeon-Joon;Kang, Dong-Joong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.227-233
    • /
    • 2019
  • Recently, along with the recent development of deep learning technique, neural networks are achieving success in computer vision filed. Convolutional neural network have shown outstanding performance in not only for a simple image classification task, but also for tasks with high difficulty such as object segmentation and detection. However many such deep learning models are based on supervised-learning, which requires more annotation labels than image-level label. Especially image semantic segmentation model requires pixel-level annotations for training, which is very. To solve these problems, this paper proposes a weakly-supervised semantic segmentation method which requires only image level label to train network. Existing weakly-supervised learning methods have limitations in detecting only specific area of object. In this paper, on the other hand, we use multi-classifier deep learning architecture so that our model recognizes more different parts of objects. The proposed method is evaluated using VOC 2012 validation dataset.

Utilizing Unlabeled Documents in Automatic Classification with Inter-document Similarities (문헌간 유사도를 이용한 자동분류에서 미분류 문헌의 활용에 관한 연구)

  • Kim, Pan-Jun;Lee, Jae-Yun
    • Journal of the Korean Society for information Management
    • /
    • v.24 no.1 s.63
    • /
    • pp.251-271
    • /
    • 2007
  • This paper studies the problem of classifying documents with labeled and unlabeled learning data, especially with regards to using document similarity features. The problem of using unlabeled data is practically important because in many information systems obtaining training labels is expensive, while large quantities of unlabeled documents are readily available. There are two steps In general semi-supervised learning algorithm. First, it trains a classifier using the available labeled documents, and classifies the unlabeled documents. Then, it trains a new classifier using all the training documents which were labeled either manually or automatically. We suggested two types of semi-supervised learning algorithm with regards to using document similarity features. The one is one step semi-supervised learning which is using unlabeled documents only to generate document similarity features. And the other is two step semi-supervised learning which is using unlabeled documents as learning examples as well as similarity features. Experimental results, obtained using support vector machines and naive Bayes classifier, show that we can get improved performance with small labeled and large unlabeled documents then the performance of supervised learning which uses labeled-only data. When considering the efficiency of a classifier system, the one step semi-supervised learning algorithm which is suggested in this study could be a good solution for improving classification performance with unlabeled documents.

A Comparison Study of Classification Algorithms in Data Mining

  • Lee, Seung-Joo;Jun, Sung-Rae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • Generally the analytical tools of data mining have two learning types which are supervised and unsupervised learning algorithms. Classification and prediction are main analysis tools for supervised learning. In this paper, we perform a comparison study of classification algorithms in data mining. We make comparative studies between popular classification algorithms which are LDA, QDA, kernel method, K-nearest neighbor, naive Bayesian, SVM, and CART. Also, we use almost all classification data sets of UCI machine learning repository for our experiments. According to our results, we are able to select proper algorithms for given classification data sets.

Electricity Price Prediction Based on Semi-Supervised Learning and Neural Network Algorithms (준지도 학습 및 신경망 알고리즘을 이용한 전기가격 예측)

  • Kim, Hang Seok;Shin, Hyun Jung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.1
    • /
    • pp.30-45
    • /
    • 2013
  • Predicting monthly electricity price has been a significant factor of decision-making for plant resource management, fuel purchase plan, plans to plant, operating plan budget, and so on. In this paper, we propose a sophisticated prediction model in terms of the technique of modeling and the variety of the collected variables. The proposed model hybridizes the semi-supervised learning and the artificial neural network algorithms. The former is the most recent and a spotlighted algorithm in data mining and machine learning fields, and the latter is known as one of the well-established algorithms in the fields. Diverse economic/financial indexes such as the crude oil prices, LNG prices, exchange rates, composite indexes of representative global stock markets, etc. are collected and used for the semi-supervised learning which predicts the up-down movement of the price. Whereas various climatic indexes such as temperature, rainfall, sunlight, air pressure, etc, are used for the artificial neural network which predicts the real-values of the price. The resulting values are hybridized in the proposed model. The excellency of the model was empirically verified with the monthly data of electricity price provided by the Korea Energy Economics Institute.

Semi-Supervised Recursive Learning of Discriminative Mixture Models for Time-Series Classification

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.186-199
    • /
    • 2013
  • We pose pattern classification as a density estimation problem where we consider mixtures of generative models under partially labeled data setups. Unlike traditional approaches that estimate density everywhere in data space, we focus on the density along the decision boundary that can yield more discriminative models with superior classification performance. We extend our earlier work on the recursive estimation method for discriminative mixture models to semi-supervised learning setups where some of the data points lack class labels. Our model exploits the mixture structure in the functional gradient framework: it searches for the base mixture component model in a greedy fashion, maximizing the conditional class likelihoods for the labeled data and at the same time minimizing the uncertainty of class label prediction for unlabeled data points. The objective can be effectively imposed as individual mixture component learning on weighted data, hence our mixture learning typically becomes highly efficient for popular base generative models like Gaussians or hidden Markov models. Moreover, apart from the expectation-maximization algorithm, the proposed recursive estimation has several advantages including the lack of need for a pre-determined mixture order and robustness to the choice of initial parameters. We demonstrate the benefits of the proposed approach on a comprehensive set of evaluations consisting of diverse time-series classification problems in semi-supervised scenarios.

EER-ASSL: Combining Rollback Learning and Deep Learning for Rapid Adaptive Object Detection

  • Ahmed, Minhaz Uddin;Kim, Yeong Hyeon;Rhee, Phill Kyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4776-4794
    • /
    • 2020
  • We propose a rapid adaptive learning framework for streaming object detection, called EER-ASSL. The method combines the expected error reduction (EER) dependent rollback learning and the active semi-supervised learning (ASSL) for a rapid adaptive CNN detector. Most CNN object detectors are built on the assumption of static data distribution. However, images are often noisy and biased, and the data distribution is imbalanced in a real world environment. The proposed method consists of collaborative sampling and EER-ASSL. The EER-ASSL utilizes the active learning (AL) and rollback based semi-supervised learning (SSL). The AL allows us to select more informative and representative samples measuring uncertainty and diversity. The SSL divides the selected streaming image samples into the bins and each bin repeatedly transfers the discriminative knowledge of the EER and CNN models to the next bin until convergence and incorporation with the EER rollback learning algorithm is achieved. The EER models provide a rapid short-term myopic adaptation and the CNN models an incremental long-term performance improvement. EER-ASSL can overcome noisy and biased labels in varying data distribution. Extensive experiments shows that EER-ASSL obtained 70.9 mAP compared to state-of-the-art technology such as Faster RCNN, SSD300, and YOLOv2.

ART1-based Fuzzy Supervised Learning Algorithm (ART-1 기반 퍼지 지도 학습 알고리즘)

  • Kim Kwang-Baek;Cho Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.4
    • /
    • pp.883-889
    • /
    • 2005
  • Error backpropagation algorithm of multilayer perceptron may result in local-minima because of the insufficient nodes in the hidden layer, inadequate momentum set-up, and initial weights. In this paper, we proposed the ART-1 based fuzzy supervised learning algorithm which is composed of ART-1 and fuzzy single layer supervised learning algorithm. The Proposed fuzzy supervised learning algorithm using self-generation method applied not only ART-1 to creation of nodes from the input layer to the hidden layer, but also the winer-take-all method, modifying stored patterns according to specific patterns. to adjustment of weights. We have applied the proposed learning method to the problem of recognizing a resident registration number in resident cards. Our experimental result showed that the possibility of local-minima was decreased and the teaming speed and the paralysis were improved more than the conventional error backpropagation algorithm.