• Title/Summary/Keyword: supervised clustering

Search Result 112, Processing Time 0.026 seconds

Automatic Email Multi-category Classification Using Dynamic Category Hierarchy and Non-negative Matrix Factorization (비음수 행렬 분해와 동적 분류 체계를 사용한 자동 이메일 다원 분류)

  • Park, Sun;An, Dong-Un
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.5
    • /
    • pp.378-385
    • /
    • 2010
  • The explosive increase in the use of email has made to need email classification efficiently and accurately. Current work on the email classification method have mainly been focused on a binary classification that filters out spam-mails. This methods are based on Support Vector Machines, Bayesian classifiers, rule-based classifiers. Such supervised methods, in the sense that the user is required to manually describe the rules and keyword list that is used to recognize the relevant email. Other unsupervised method using clustering techniques for the multi-category classification is created a category labels from a set of incoming messages. In this paper, we propose a new automatic email multi-category classification method using NMF for automatic category label construction method and dynamic category hierarchy method for the reorganization of email messages in the category labels. The proposed method in this paper, a large number of emails are managed efficiently by classifying multi-category email automatically, email messages in their category are reorganized for enhancing accuracy whenever users want to classify all their email messages.

Medical Image Analysis Using Artificial Intelligence

  • Yoon, Hyun Jin;Jeong, Young Jin;Kang, Hyun;Jeong, Ji Eun;Kang, Do-Young
    • Progress in Medical Physics
    • /
    • v.30 no.2
    • /
    • pp.49-58
    • /
    • 2019
  • Purpose: Automated analytical systems have begun to emerge as a database system that enables the scanning of medical images to be performed on computers and the construction of big data. Deep-learning artificial intelligence (AI) architectures have been developed and applied to medical images, making high-precision diagnosis possible. Materials and Methods: For diagnosis, the medical images need to be labeled and standardized. After pre-processing the data and entering them into the deep-learning architecture, the final diagnosis results can be obtained quickly and accurately. To solve the problem of overfitting because of an insufficient amount of labeled data, data augmentation is performed through rotation, using left and right flips to artificially increase the amount of data. Because various deep-learning architectures have been developed and publicized over the past few years, the results of the diagnosis can be obtained by entering a medical image. Results: Classification and regression are performed by a supervised machine-learning method and clustering and generation are performed by an unsupervised machine-learning method. When the convolutional neural network (CNN) method is applied to the deep-learning layer, feature extraction can be used to classify diseases very efficiently and thus to diagnose various diseases. Conclusions: AI, using a deep-learning architecture, has expertise in medical image analysis of the nerves, retina, lungs, digital pathology, breast, heart, abdomen, and musculo-skeletal system.

Arabic Stock News Sentiments Using the Bidirectional Encoder Representations from Transformers Model

  • Eman Alasmari;Mohamed Hamdy;Khaled H. Alyoubi;Fahd Saleh Alotaibi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.113-123
    • /
    • 2024
  • Stock market news sentiment analysis (SA) aims to identify the attitudes of the news of the stock on the official platforms toward companies' stocks. It supports making the right decision in investing or analysts' evaluation. However, the research on Arabic SA is limited compared to that on English SA due to the complexity and limited corpora of the Arabic language. This paper develops a model of sentiment classification to predict the polarity of Arabic stock news in microblogs. Also, it aims to extract the reasons which lead to polarity categorization as the main economic causes or aspects based on semantic unity. Therefore, this paper presents an Arabic SA approach based on the logistic regression model and the Bidirectional Encoder Representations from Transformers (BERT) model. The proposed model is used to classify articles as positive, negative, or neutral. It was trained on the basis of data collected from an official Saudi stock market article platform that was later preprocessed and labeled. Moreover, the economic reasons for the articles based on semantic unit, divided into seven economic aspects to highlight the polarity of the articles, were investigated. The supervised BERT model obtained 88% article classification accuracy based on SA, and the unsupervised mean Word2Vec encoder obtained 80% economic-aspect clustering accuracy. Predicting polarity classification on the Arabic stock market news and their economic reasons would provide valuable benefits to the stock SA field.

A Study on Automatic Classification Technique of Malware Packing Type (악성코드 패킹유형 자동분류 기술 연구)

  • Kim, Su-jeong;Ha, Ji-hee;Lee, Tae-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.5
    • /
    • pp.1119-1127
    • /
    • 2018
  • Most of the cyber attacks are caused by malicious codes. The damage caused by cyber attacks are gradually expanded to IoT and CPS, which is not limited to cyberspace but a serious threat to real life. Accordingly, various malicious code analysis techniques have been appeared. Dynamic analysis have been widely used to easily identify the resulting malicious behavior, but are struggling with an increase in Anti-VM malware that is not working in VM environment detection. On the other hand, static analysis has difficulties in analysis due to various packing techniques. In this paper, we proposed malware classification techniques regardless of known packers or unknown packers through the proposed model. To do this, we designed a model of supervised learning and unsupervised learning for the features that can be used in the PE structure, and conducted the results verification through 98,000 samples. It is expected that accurate analysis will be possible through customized analysis technology for each class.

Real-Time Face Recognition Based on Subspace and LVQ Classifier (부분공간과 LVQ 분류기에 기반한 실시간 얼굴 인식)

  • Kwon, Oh-Ryun;Min, Kyong-Pil;Chun, Jun-Chul
    • Journal of Internet Computing and Services
    • /
    • v.8 no.3
    • /
    • pp.19-32
    • /
    • 2007
  • This paper present a new face recognition method based on LVQ neural net to construct a real time face recognition system. The previous researches which used PCA, LDA combined neural net usually need much time in training neural net. The supervised LVQ neural net needs much less time in training and can maximize the separability between the classes. In this paper, the proposed method transforms the input face image by PCA and LDA sequentially into low-dimension feature vectors and recognizes the face through LVQ neural net. In order to make the system robust to external light variation, light compensation is performed on the detected face by max-min normalization method as preprocessing. PCA and LDA transformations are applied to the normalized face image to produce low-level feature vectors of the image. In order to determine the initial centers of LVQ and speed up the convergency of the LVQ neural net, the K-Means clustering algorithm is adopted. Subsequently, the class representative vectors can be produced by LVQ2 training using initial center vectors. The face recognition is achieved by using the euclidean distance measure between the center vector of classes and the feature vector of input image. From the experiments, we can prove that the proposed method is more effective in the recognition ratio for the cases of still images from ORL database and sequential images rather than using conventional PCA of a hybrid method with PCA and LDA.

  • PDF

Molecular Classification and Characterization of Human Gastric Adenocarcinoma through DNA Microarray

  • Xie, Hongjian;Eun, Jung-Woo;Noh, Ji-Heon;Jeong, Kwang-Wha;Kim, Jung-Kyu;Kim, Su-Young;Lee, Sug-Hyung;Park, Won-Sang;Yoo, Nam-Jin;Lee, Jung-Young;Nam, Suk-Woo
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.3
    • /
    • pp.190-194
    • /
    • 2007
  • Gastric adenocarcinoma (GA) is a major tumor type of gastric cancers and subdivides into several different tumors such as papillary, tubular mucinous, signet-ring cell and adenosquamous carcinoma according to histopatholigical determination. In other hand, GA is also subdivided into intestinal and diffuse type of adenocarcinoma by the Lauren?fs classification. In this study, we have examined differential gene expression pattern analysis of three histologically different GAs of 24 samples by using DNA microarray containing approximately 19000 genetic elements. The hierarchical clustering analysis of 24 gastric adenocarcinomas (12 of intestinal type, 7 of diffuse type and 5 of mixed type) resulted in two major subgroup on dendrogram, and two subgroups included most of intestinal and diffused type of GAs respectively. Supervised analysis of 19 intestinal and diffuse type GAs by using Wilcoxon rank T-test (P<0.01) resulted in 100 outlier genes which exactly separated intestinal and diffuse type of GA by differential gene expression. In conclusion, genome-wide analysis of gene expression of GAs suggested that GAs may subclassify as intestinal and diffused type of GA by their characteristic molecular expression. Our results also provide large-scale genetic elements which reflect molecular differences of intestinal and diffuse type of GAs, and this may facilitate to understand different molecular carcinogenesis of gastric cancer.

Peptide Profiling and Selection of Specific-Expressed Peptides in Hypoglycemic Sorghum Seed using SELDI-TOF MS (SELDI-TOF MS를 활용한 혈당강하 수수 종자의 펩타이드 프로파일링 및 특이 발현 펩타이드 선발)

  • Park, Sei Joon;Hwang, Su Min;Park, Jun Young;Ko, Jee-Yeon;Kim, Tae Wan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.3
    • /
    • pp.252-262
    • /
    • 2014
  • Sorghum seed is traditionally used as secondary food sources in addition to rice in Korea. While the hypoglycemia regulating phytochemicals have been found in sorghum seed, peptides related with hypoglycemia never been studied before. To obtain the peptide characteristics and the specifically high-expressed peptides in hypoglycemic sorghum seed, peptide profiles of seven hypoglycemic and five non-hypoglycemic sorghum lines bred in RDA were determined using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS). The twelve sorghum lines exhibited 104 peptides on CM10 protein chip array (weak cation exchange) and 95 peptides on Q10 (weak cation exchange) in the molecular mass range from 2,000 to 20,000 Da. Heat map via supervised hierarchical clustering of the significantly different peptides (p < 0.01) in peak intensity among the 12 lines effectively revealed the specifically upregulated peptides in each line and distinguished between 7 hypoglycemic and 5 non-hypoglycemic lines. Through the comparison with hypoglycemic and non-hypoglycemic lines, 10 peptides including 2231.6, 2845.4, 2907.9, 3063.5, 3132.6, 3520.8, 4078.8, 5066.2, 5296.5, 5375.5 Da were specifically high-expressed in hypoglycemic lines at p < 0.00001. This study characterized seed peptides of 12 sorghums and found ten peptides highly expressed for hypoglycemic sorghum lines, which could be used as peptide biomarkers for identification of hypoglycemic sorghum.

Hydrological Forecasting Based on Hybrid Neural Networks in a Small Watershed (중소하천유역에서 Hybrid Neural Networks에 의한 수문학적 예측)

  • Kim, Seong-Won;Lee, Sun-Tak;Jo, Jeong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.4
    • /
    • pp.303-316
    • /
    • 2001
  • In this study, Radial Basis Function(RBF) Neural Networks Model, a kind of Hybrid Neural Networks was applied to hydrological forecasting in a small watershed. RBF Neural Networks Model has four kinds of parameters in it and consists of unsupervised and supervised training patterns. And Gaussian Kernel Function(GKF) was used among many kinds of Radial Basis Functions(RBFs). K-Means clustering algorithm was applied to optimize centers and widths which ate the parameters of GKF. The parameters of RBF Neural Networks Model such as centers, widths weights and biases were determined by the training procedures of RBF Neural Networks Model. And, with these parameters the validation procedures of RBF Neural Networks Model were carried out. RBF Neural Networks Model was applied to Wi-Stream basin which is one of the IHP Representative basins in South Korea. 10 rainfall events were selected for training and validation of RBF Neural Networks Model. The results of RBF Neural Networks Model were compared with those of Elman Neural Networks(ENN) Model. ENN Model is composed of One Step Secant BackPropagation(OSSBP) and Resilient BackPropagation(RBP) algorithms. RBF Neural Networks shows better results than ENN Model. RBF Neural Networks Model spent less time for the training of model and can be easily used by the hydrologists with little background knowledge of RBF Neural Networks Model.

  • PDF

Semi-automatic Construction of Learning Set and Integration of Automatic Classification for Academic Literature in Technical Sciences (기술과학 분야 학술문헌에 대한 학습집합 반자동 구축 및 자동 분류 통합 연구)

  • Kim, Seon-Wu;Ko, Gun-Woo;Choi, Won-Jun;Jeong, Hee-Seok;Yoon, Hwa-Mook;Choi, Sung-Pil
    • Journal of the Korean Society for information Management
    • /
    • v.35 no.4
    • /
    • pp.141-164
    • /
    • 2018
  • Recently, as the amount of academic literature has increased rapidly and complex researches have been actively conducted, researchers have difficulty in analyzing trends in previous research. In order to solve this problem, it is necessary to classify information in units of academic papers. However, in Korea, there is no academic database in which such information is provided. In this paper, we propose an automatic classification system that can classify domestic academic literature into multiple classes. To this end, first, academic documents in the technical science field described in Korean were collected and mapped according to class 600 of the DDC by using K-Means clustering technique to construct a learning set capable of multiple classification. As a result of the construction of the training set, 63,915 documents in the Korean technical science field were established except for the values in which metadata does not exist. Using this training set, we implemented and learned the automatic classification engine of academic documents based on deep learning. Experimental results obtained by hand-built experimental set-up showed 78.32% accuracy and 72.45% F1 performance for multiple classification.

Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model (하이브리드 인공신경망 모형을 이용한 부도 유형 예측)

  • Jo, Nam-ok;Kim, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.79-99
    • /
    • 2015
  • The prediction of bankruptcy has been extensively studied in the accounting and finance field. It can have an important impact on lending decisions and the profitability of financial institutions in terms of risk management. Many researchers have focused on constructing a more robust bankruptcy prediction model. Early studies primarily used statistical techniques such as multiple discriminant analysis (MDA) and logit analysis for bankruptcy prediction. However, many studies have demonstrated that artificial intelligence (AI) approaches, such as artificial neural networks (ANN), decision trees, case-based reasoning (CBR), and support vector machine (SVM), have been outperforming statistical techniques since 1990s for business classification problems because statistical methods have some rigid assumptions in their application. In previous studies on corporate bankruptcy, many researchers have focused on developing a bankruptcy prediction model using financial ratios. However, there are few studies that suggest the specific types of bankruptcy. Previous bankruptcy prediction models have generally been interested in predicting whether or not firms will become bankrupt. Most of the studies on bankruptcy types have focused on reviewing the previous literature or performing a case study. Thus, this study develops a model using data mining techniques for predicting the specific types of bankruptcy as well as the occurrence of bankruptcy in Korean small- and medium-sized construction firms in terms of profitability, stability, and activity index. Thus, firms will be able to prevent it from occurring in advance. We propose a hybrid approach using two artificial neural networks (ANNs) for the prediction of bankruptcy types. The first is a back-propagation neural network (BPN) model using supervised learning for bankruptcy prediction and the second is a self-organizing map (SOM) model using unsupervised learning to classify bankruptcy data into several types. Based on the constructed model, we predict the bankruptcy of companies by applying the BPN model to a validation set that was not utilized in the development of the model. This allows for identifying the specific types of bankruptcy by using bankruptcy data predicted by the BPN model. We calculated the average of selected input variables through statistical test for each cluster to interpret characteristics of the derived clusters in the SOM model. Each cluster represents bankruptcy type classified through data of bankruptcy firms, and input variables indicate financial ratios in interpreting the meaning of each cluster. The experimental result shows that each of five bankruptcy types has different characteristics according to financial ratios. Type 1 (severe bankruptcy) has inferior financial statements except for EBITDA (earnings before interest, taxes, depreciation, and amortization) to sales based on the clustering results. Type 2 (lack of stability) has a low quick ratio, low stockholder's equity to total assets, and high total borrowings to total assets. Type 3 (lack of activity) has a slightly low total asset turnover and fixed asset turnover. Type 4 (lack of profitability) has low retained earnings to total assets and EBITDA to sales which represent the indices of profitability. Type 5 (recoverable bankruptcy) includes firms that have a relatively good financial condition as compared to other bankruptcy types even though they are bankrupt. Based on the findings, researchers and practitioners engaged in the credit evaluation field can obtain more useful information about the types of corporate bankruptcy. In this paper, we utilized the financial ratios of firms to classify bankruptcy types. It is important to select the input variables that correctly predict bankruptcy and meaningfully classify the type of bankruptcy. In a further study, we will include non-financial factors such as size, industry, and age of the firms. Thus, we can obtain realistic clustering results for bankruptcy types by combining qualitative factors and reflecting the domain knowledge of experts.