• Title/Summary/Keyword: supersonic jet

Search Result 384, Processing Time 0.031 seconds

Prediction of Supersonic Jet Impingement on Flat Plate and Its Application (초음속 충돌제트에 대한 수치적 연구와 응용)

  • Lee K. S.;Hong S. K.;Park S. O.;Bae Y. S.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.225-228
    • /
    • 2002
  • Supersonic jet impingement on a flat plate has been investigated to show the flow physics for different jet heights and to demonstrate the adequacy of the characteristics-based flux-difference Wavier-Stokes code Current study also compares the steady-state solutions obtained with variable CFL number for different grid spacing with the time-accurate unsteady solutions using the inner iterations, displaying a good agreement between the two sets of numerical solutions. The unsteady nature of wall fluctuations due to bouncing of the plate shock is also uncovered for high pressure ratios. The methodology is then applied to a complex vertical launcher system where the jet plume hits the bottom wail, deflects into the plenum and eventually exits through the vertical uptake. Flow structures within vertical launcher system are captured and solutions are partially verified against the flight test data. Present jet impingement study thus shows the usefulness of CFD in designing a complex structure and predicting flow behavior within such a system.

  • PDF

Numerical Analysis for Supersonic Off-Design Turbulent Jet Flow (초음속 불완전 팽창 난류 제트 유동에 관한 수치적 연구)

  • Kim Jae-Soo
    • Journal of computational fluids engineering
    • /
    • v.4 no.2
    • /
    • pp.57-66
    • /
    • 1999
  • Numerical Analysis has been done for the supersonic off-design jet flow due to the pressure difference between the jet and the ambient fluid. The difference of pressure generates an oblique shock or an expansion wave at the nozzle exit. The waves reflect repeatedly on the center axis and the sonic surface in the shear layer. The pressure difference is resolved across these reflected waves. In this paper, the axi-symmetric Navier-Stokes equation has been used with the κ-ε turbulence model. The second order TVD scheme with flux limiters, based on the flux vector split with the smooth eigenvalue split, has been used to capture internal shocks and other discontinuities. Numerical calculations have been done to analyze the off-design jet flow due to the pressure difference. The variation of pressure along the flow axis is compared with an experimental result and other numerical result. The characteristics of the interaction between the shock cell and the turbulence mixing layer have been analyzed.

  • PDF

Experimental study on flow field behind backward-facing step using detonation-driven shock tunnel

  • Kim, T.H.;Yoshikawa, M.;Narita, M.;Obara, T.;Ohyagi, S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.85-92
    • /
    • 2004
  • As a research to develop a SCRAM jet engine is actively conducted, a necessity to produce a high-enthalpy flow in a laboratory is increasing. In order to develop the SCRAM-jet engine, stabilized combustion in a supersonic flow-field should be attained, in which a duration time of flow is extremely short. Therefore, a mixing process of breathed air and fuel, which is injected into supersonic flow-fields is one of the most important problem. Since, the flow inside SCRAM jet engine has high-enthalpy, an experimental facility is required to produce such high-enthalpy flow-field. In this study, a detonation-driven shock tunnel was built and was used to produce high-enthalpy flow. Further-more, SCRAM jet engine model equipped backward-facing step was installed at test section and flow-fields were visualized using color-schlieren technique and high speed video camera. The fuel was injected perpendicular to the flow of Mach number three behind backward-facing step. The height of the step, distance of injection and injection pressure were changed to investigate the effects of step on a mixing characteristic between air and fuel. The schlieren photograph and pressure histories show that the fuel was ignited behind the step.

  • PDF

Experimental Study of Thrust Vectoring of Supersonic Jet Utilizing Co-flowing Coanda Effects (동축류의 코안다 효과를 이용한 초음속 제트의 추력편향제어에 관한 실험적 연구)

  • Yoon, Sang-Hun;Jun, Dong-Hyun;Heo, Jun-Young;Sung, Hong-Gye;Lee, Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.927-933
    • /
    • 2012
  • The characteristics of two-dimensional supersonic coanda flow was experimentally investigated. For various ratios of slot height to coanda wall's radius of curvature, surface roughnesses, and jet stagnation pressures, the characteristics of the supersonic coanda flow such as shock structures and hysteresis were observed by flow visualization. It was found that the characteristics of hysteresis of the coanda jet was related to the surface roughness of the coanda wall. The study was further extended for application of the tangentially injected coanda jet to control co-flowing highly compressible main jet direction. It was noticed that the stagnation pressure of the main jet as well as the ratio of the slot height to coanda wall's radius of curvature wall was an influencing factor in the performance of the fluidic thrust vectoring method.

Experimental study on the Supersonic Jet Noise and Its Prediction (초음속 제트에서의 유동 특성 및 소음 예측에 관한 연구)

  • Lim, Dong-Hwa;Ko, Young-Sung;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.27-32
    • /
    • 2007
  • this paper the acoustic signature from a supersonic nozzle is measured and compared to the result of a program developed for a gas turbine noise prediction. In order to measure the jet Mach Number, the pressure and temperature at the settling chamber was measured along with pressures from a pitot-tube placed near the exit. The results are also compared to the ones obtained with a shadow graph technique. Jet noise produced by an imperfectly expanded jet contains shock associated noise, which consist of broadband noise and screech tone noise. For subsonic condition, the directivity is dominant to the downstream direction due to turbulence mixing noise. For supersonic conditions, however, the directivity is dominant toward upstream direction due to shock associated noise. The comparison with a jet exhaust noise prediction code shows good agreement at supersonic conditions but needs to be improved at subsonic speeds.

Oscillatory Features of Supersonic Impinging Jet Flows; Effects of the Nozzle Pressure Ratio and Nozzle Plate Distance (노즐 압력비와 충돌면까지의 거리 변화에 따른 초음속 충돌 제트 유동의 진동 특성)

  • Kim S. I.;Park S. O.;Lee K. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.154-159
    • /
    • 2004
  • Numerical simulations of supersonic impinging jet flows are carried out using the axisymmetric Navier-Stokes code. This paper focuses on the oscillatory flow features associated with the variation of the nozzle pressure ratio and nozzle-to-plate distance. Frequencies of the surface pressure oscillation from computational results are in accord with the measured impinging tones for various cases of nozzle-to-plate distance. The variation of this frequency with distance show a staging behavior. Computed results for the case of nozzle pressure ratio variation for a fixed nozzle-to-plate distance also demonstrate a staging behavior. These two seemingly different staging behaviors are found to obey the same frequency-distance characteristics when the frequency and the distance are normalized by using the length of the shock cell.

  • PDF

Numerical Study of Slot Injection in Supersonic combustor (초음속 연소기내부의 측면제트분사에 대한 수치적 연구)

  • 김종록;김재수
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.108-113
    • /
    • 2003
  • The numerical research has been done for the transverse jet behind a rearward- facing step in turbulent supersonic flow without chemical reaction. The purpose of transverse jet is used to improve mixing of the fuel in the combustor. Two- dimensional unsteady flowfields generated by slot injection into supersonic flow are numerically simulated by the integration of Navier-Stokes equation with two-equation k - $\varepsilon$ turbulence model. Numerical methods are used high-order upwind TVD scheme. Eight cases are computed, comprising slot momentum flux ratios and slot position at downstream of the step. The flow is very similar to the cavity flow, because the jet is like an obstacle. Therefore, the numerical results show the periodic phenomenon.

  • PDF

Investigation of Vaporized Kerosene Injection in a Supersonic Model Combustor

  • Yu, G.;Li, J.G.;Lu, X.N.;Chang, X.Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.79-84
    • /
    • 2004
  • This paper report our preliminary results of characterizing the jet structures of kerosene injection into quiescent atmosphere and a Mach 2.5 crossflow at various preheat temperature. A heating system has been designed and tested that can prepare heated kerosene of 0.8 kg up to 670 K at a pressure of 5.5 ㎫. Temperature measurement near the injector shows that the temperature of pressurized kerosene can be kept constant during the experimental duration. Comparison of kerosene jet structures in the preheat temperature range of 290-550 K demonstrates that with injection pressure of 4 ㎫ the jet plume turns into vapor phase completely at injection temperature of 550 K, while keeping the penetration depth essentially unchanged. The results suggest that the injection of vaporized fuel would improve the performance of a liquid hydrocarbon-fueled supersonic combustor because the evaporation process is now omitted.

  • PDF

Noise Reduction of an Underexpanded Supersonic Jet via Steady Blowing with Microjets (마이크로 제트를 이용한 과소팽창 음속 제트에서의 소음저감)

  • Kim, Jin-Hwa;Kim, Jung-Hoon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1472-1479
    • /
    • 2003
  • An attempt to reduce supersonic jet noise is carried out by using two steady microjets in a round jet. The jet is issued from a round sonic nozzle with an exit diameter of 10 mm. Two micro-nozzles with an inside diameter of 1 mm each are installed on the exit plane at an angle of 45 relative to the main jet axis. Far-field noise was measured at 40 diameters off the jet axis. The angle between a microphone and the jet axis is 30 or 90$^{\circ}$. For an injection rate of 4-6% of the main jet, screech tones were completely suppressed by the microjets. The reduction in the overall sound pressure levels were 2.4 and 2.7 dB for 90 and 30 measuring directions, respectively. However, the enhancement of mixing/spreading of the jet by the microjet was negligible. The reduction of noise is probably due to distorted shock cell structures and/or deformed large scale vortical structures by the microjets.

An Experimental Study on the Supersonic Jet Noise from Multihole (다공 초음속 분류소음에 관한 실험적 연구)

  • Kwon, Y.P.;Suh, K.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.2
    • /
    • pp.96-105
    • /
    • 1992
  • The objective of this paper is to study experimentally on the noise characteristics of supersonic jet from multihole orifice in the range of jet pressure from $at_g$ to $at_g$ in the reverberation room. At first, the single orifice jets are investigated for various hole diameter from 3.8mm to 10mm. Through the noise spectrum, the turbulent mixing noise and the shock associated noise is analyzed. The noise for confined jets into a tube of diameter 30mm or 90mm with length 2m is investigated in comparision with that for the free jets. The sound power level is measured and compared with thoretical models for free jet. At second, multihole orifice jets are investigated to study the effect of multijet on noise reduction. The spectrum and power level of multijets are measured and compared with single jets. The multi-jets in a confined pipe are also investigated. It is found that the noise spectrum is significantly altered by increasing the number of jet with decrease in jet diameter and also by confining the jet into tube.

  • PDF