• Title/Summary/Keyword: supersonic jet

Search Result 383, Processing Time 0.03 seconds

A Computational Study of the Supersonic Coherent Jet (초음속 코히어런트 제트에 관한 수치해석적 연구)

  • Jeong, Mi-Seon;Sanal Kumar, V.R.;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.490-495
    • /
    • 2003
  • In steel-making process of iron and steel industry, the purity and quality of steel can be dependent on the amount of CO contained in the molten metal. Recently, the supersonic oxygen jet is being applied to the molten metal in the electric furnace and thus reduces the CO amount through the chemical reactions between the oxygen jet and molten metal, leading to a better quality of steel. In this application, the supersonic oxygen jet is limited in the distance over which the supersonic velocity is maintained. In order to get longer supersonic jet propagation into the molten metal, a supersonic coherent jet is suggested as one of the alternatives which are applicable to the electric furnace system. It has a flame around the conventional supersonic jet and thus the entrainment effect of the surrounding gas into the supersonic jet is reduced, leading to a longer propagation of the supersonic jet. In this regard, gasdynamics mechanism about why the combustion phenomenon surrounding the supersonic jet causes the jet core length to be longer is not yet clarified. The present study investigates the major characteristics of the supersonic coherent jet, compared with the conventional supersonic jet. A computational study is carried out to solve the compressible, axisymmetric Navier-Stokes equations. The computational results of the supersonic coherent jet are compared with the conventional supersonic jets.

  • PDF

A Fundamental Study of the Supersonic Coherent Jet (초음속 코히어런트 제트에 관한 기초적 연구)

  • Jeong, Mi-Seon;Cho, Wee-Bun;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2139-2144
    • /
    • 2003
  • In steel-making processes of iron and steel industry, the purity and quality of steel can be dependent on the amount of CO contained in the molten metal. Recently, the supersonic oxygen jet is being applied to the molten metal in the electric furnace and thus reduces the CO amount through the chemical reactions between the oxygen jet and molten metal, leading to a better quality of steel. In this application, the supersonic oxygen jet is limited in the distance over which the supersonic velocity is maintained. In order to get longer supersonic jet propagation into the molten metal, a supersonic coherent jet is suggested as one of the alternatives which are applicable to the electric furnace system. It has a flame around the conventional supersonic jet and thus the entrainment effect of the surrounding gas into the supersonic jet is reduced, leading to a longer propagation of the supersonic jet. The objective of the present study is to investigate the supersonic coherent jet flow. A computational study is carried out to solve the compressible, axisymmetric Navier-Stokes equations. The computational results of the supersonic coherent jet are compared with the conventional supersonic jet.

  • PDF

The Experimental Study of Supersonic, Dual, Coaxial, Free, Jets (환형동축 초음속 자유 제트유동에 관한 실험적 연구)

  • Lee, K.H.;Lee, J.H.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.323-328
    • /
    • 2001
  • Supersonic coaxial, axisymmetric, jets issuing from various kinds of dual coaxial nozzles were experimentally investigated. Four different kinds of coaxial, dual nozzles were employed to characterize the major features of the supersonic, coaxial, dual jets. Two convergent-divergent supersonic nozzles with an impinging angle in the jet axis of the annular jets were designed to have the Mach number 2.0 and used to compare the coaxial jet flows with those discharging from two sonic nozzles. The primary pressure ratio was changed in the range from 4.0 to 10.0 and the assistant jet ratio from 1.0 to 4.0. The results obtained show that the assistant jets from the annular nozzle affect the coaxial jet flows and an increase of both the primary jet pressure ratio and assistant jet pressure ratio produces longer supersonic length of the dual, coaxial jet.

  • PDF

Control of the Supersonic Jet Noise Using a Wire Device (와이어 장치를 이용한 초음속 제트소음의 제어)

  • Kweon Yong Hun;Lim Chae Min;Aoki Toshiyuki;Kim Heuy Dong
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.64-67
    • /
    • 2004
  • The present study describes an experimental work to reduce supersonic jet noise using a control wire device that is placed into the supersonic jet stream. The jet pressure ratio is varied to obtain the supersonic jets which are operated in a wide range of over-expanded to moderately under-expanded conditions. The wire device is composed of long cylinders with a very small diameter. X-type wire device is applied to control the supersonic jet noise, and its location is varied to investigate the effect of the control wire device on supersonic jet noise. A high-quality Schlieren optical system is used to visualize the flow field of supersonic jet with and without the control wire device. Acoustic measurement is performed to obtain the overall sound pressure level and noise spectra. The results obtained show that the present wire device destroys the shock-cell structures, reduces the shock strength, and consequently leading to a substantial suppression of supersonic jet noise.

  • PDF

Study of Supersonic, Dual, Coaxial, Swirl Jet (초음속 이중동축 스월제트 유동특성에 관한 연구)

  • Kim, Jung-Bae;Kim, Heuy-Dong;Lee, Kwon-Hee;Setoguchi, T.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1771-1776
    • /
    • 2003
  • The supersonic swirl jet is being extensively used in many diverse fields of industrial processes since those lead to more improved performance, compared with the conventional supersonic no swirl jet. In the present study, an experiment is carried out to investigate the effect of annular swirl jet on the supersonic dual coaxial jet. A convergent-divergent nozzle with a design Mach number of 1.5 is used for the supersonic primary jet, and the sonic nozzles with four tangential inlets are used to make the secondary swirl jet. The primary jet pressure ratio is varied in the range from 3.0 to 7.0 and the outer annular jet pressure ratio is from 1.0 to 4.0. The interactions between the annular swirl and the inner supersonic jet are quantified by the pitot impact and static pressure measurements and visualized by using the Schlieren optical method. The results show that annular swirl jet alters the shock structure and impact pressure distributions compared with no swirl jet.

  • PDF

Effect of Nozzle Lip Thickness on the Characteristics of Supersonic Jet Noise (노즐립 두께가 초음속 제트의 소음특성에 미치는 영향)

  • Kweon, Yong-Hun;Aoki, Toshiyuki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.520-525
    • /
    • 2003
  • Supersonic jet issuing from a nozzle invariably cause high-frequency noises. These consist of three principal components ; the turbulent mixing noise, the broadband shock-associated noise, and the screech tone. In present study, it was experimentally investigated to the effect of nozzle lip thickness on the characteristics of supersonic jet noise. The convergent-divergent nozzle of a design Mach number 2.0 was used in experiment. With three different nozzle-lip thicknesses, the jet pressure ratio was varied in the range between 2.0 and 12.0. Acoustic measurements were conducted by microphones in an anechoic room, and the major structures of the supersonic jets were visualized by a Schlieren optical system to investigate the effect of nozzle lip thickness. The measured results show that the characteristics of supersonic jet noise, such as overall sound pressure level (OASPL) and screech frequency, strongly depend upon the thickness of nozzle-lip.

  • PDF

EXPERIMENTAL AND COMPUTATIONAL STUDIES ON HYSTERISYS PHENOMENON OF SUPERSONIC COANDA WALL JETS

  • Kim, Heuy-Dong;Kweon, Oh-Sik;Setoguchi, Toshiaki
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.514-519
    • /
    • 2000
  • Recently a considerable interest is being concentrated on industrial applications of supersonic Coanda wall jets, but the flow physics are not still understood well. It is of practical importance to evaluate the effectiveness of supersonic Coanda wall jet devices fer such industrial purposes. In the present work, experiments and computations were performed to Set a better understanding of the supersonic Coanda jet physics. The experiments were made using a small blow-down wind tunnel. The operating pressure ratio and the Coanda surface configuration were changed to investigate their influences on the wall jet flows. Two-dimensional Navier-Stokes computations were performed using a TVD finite volume scheme to effectively capture the important wave structures of supersonic Coanda jet flows. Both experimental and computational results showed several important hysterical features of the supersonic Coanda wall jets; the attachment and detachment of supersonic Coanda jet were strongly dependent on the change processes of the operating pressure ratio and the detailed flow configuration.

  • PDF

Effect of Mesh Screen Device on Over-Expanded Supersonic Jet Noise (메쉬 스크린 장치가 과팽창 초음속 제트소음에 미치는 영향)

  • Kweon, Yong-Hun;Kim, Jae-Hyung;Lim, Chae-Min;Aoki, Toshiyuki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3150-3155
    • /
    • 2007
  • This paper describes an experimental work to investigate the effect of mesh screen device on the jet structure and acoustic characteristics of over-expanded supersonic jet. The mesh screen device is placed into the supersonic jet stream. In order to perturb mainly the initial jet shear layer, the hole is perforated in the central part of the mesh screen. The diameter of the perforated hole and the location of mesh screen device are varied. A Schlieren optical system is used to visualize the flow fields of supersonic jet without and with the mesh screen device. Pitot pressure measurement is carried out to obtain the pressure distribution in the jet flow. Acoustic measurement also is performed to obtain the OASPL and noise spectra. The results obtained show that the jet structure and the jet noise control effectiveness is strongly dependent upon the diameter of the perforated hole and the location of the mesh screen device in the jet stream. Provided that the mesh screen device is placed at the location to perturb effectively the initial shear layer, the present control method is effective in suppressing the supersonic jet noise.

  • PDF

An Experimental Study of the Wall Temperature of the Supersonic Impinging Coaxial Jet Using an FLIR (적외선 카메라를 이용한 초음속 충돌 동축제트의 벽면 온도 측정)

  • Gwak, Jong-Ho;Kumar, V. R. Sanal;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1631-1636
    • /
    • 2004
  • The supersonic impinging jet has been extensively applied to rocket launching system, gas jet cutting control, gas turbine blade cooling, etc. In such applications, wall temperature of an object on which supersonic jet impinges is a very important factor to determine the performance and life of the device. However, wall temperature data of supersonic impinging jets are not enough to data. The present study describes an experimental work to measure the wall temperatures of a vertical flat plate on which supersonic, dual, coaxial jet impinges. An Infrared camera is employed to measure the wall temperature distribution on the impinging plate. The pressure ratio of the jet is varied to obtain the supersonic jets in the range of over-expanded to moderately under-expanded conditions at the exit of coaxial nozzle. The distance between the coaxial nozzle and the flat plate was also varied. The coaxial jet flows are visualized using a Shadow optical method. The results show that the wall temperature distribution of the impinging plate is strongly dependent on the jet pressure ratio and the distance between the nozzle and plate.

  • PDF

A Fundamental Study of Supersonic Coaxial Jets for Gas Cutting (가스절단용 초음속 제트유동에 관한 기초적 연구)

  • Lee, Gwon-Hui;Gu, Byeong-Su;Kim, Hui-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.837-844
    • /
    • 2001
  • Jet cutting technology currently makes use of a generic supersonic gas jet to improve the cutting speed and performance. In order to get a better understanding of the flow characteristics involved in the supersonic jet cutting technology, the axisymmetric Navier-Stokes equations have been solved using a fully implicit finite volume method. Computations have been conducted to investigate some major characteristics of supersonic coaxial turbulent jets. An assistant gas jet has been imposed on the primary gas jet to simulate realistic jet cutting circumstance. The pressure and the temperature ratios of the primary and assistant gas jets are altered to investigate the major characteristics of the coaxial jets. The total pressure and Mach number distributions, shock wave systems, and the jet core length which characterize the coaxial jet flows are strongly affected by the pressure ratio, but not significantly dependent on the total temperature ratio. The assistant gas jet greatly affects the basic flow characteristics of the shock system and the core length of under and over-expanded jets.