• Title/Summary/Keyword: supersonic combustion

Search Result 153, Processing Time 0.031 seconds

Histories and Trends on Scramjet Development of Worldwide Developed Countries (2) : France, Germany, Japan and Australia (해외 선진국의 스크램제트 개발역사 및 동향(2) : 프랑스, 독일, 일본 그리고 오스트레일리아)

  • Park Jong-Chan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.79-85
    • /
    • 2005
  • Considerable achievements on scramjet technology have been performed since the end of 1950's when the improvement of performance on ramjet engine was begun. From the viewpoint of rapid and economic efficiency, scramjet propulsion system is presently regarded as the most promising one considered to be applied to the atmospheric hypersonic airplanes and ballistic weapons and even the space launch vehicles. Histories and current trends on scramjet development of france, Germany, Japan and Australia are investigated and suggested in this paper.

  • PDF

Large-Eddy Simulation based Eulerian PDF Approach for the Simulation of Scramjet Combustors (대와류모사 기법과 확률밀도함수를 이용한 스크램제트 연소부에서의 연소 현상 연구)

  • Koo, Heeseok
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.355-357
    • /
    • 2012
  • A probability density function (PDF) approach to account for turbulence-chemistry interaction in the context of large eddy simulation (LES) based simulation of scramjets is developed. To solve the high-dimensional joint-composition PDF transport equation robustly, the semi-discrete quadrature method of moments (SeQMOM) is recently proposed [1]. The SeQMOM approach addresses key numerical issues in LES related to the inaccuracies in computing filter-scale gradients, enabling an efficient and numerically consistent solution of the PDF transport equation. The computational tool is used to simulate a cavity-stabilized Mach 2.2 supersonic combustor.

  • PDF

Preliminary Design Program for a High Thrust Liquid Rocket-Engine : Components Design for Static Performance Design (대추력 액체로켓엔진 예비설계 프로그램 : 정상성능 설계를 위한 구성품 모델링)

  • Ko, Tae-Ho;Kim, Sang-Min;Kim, Hyung-Min;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.414-416
    • /
    • 2009
  • In order to build a transient simulation program for a high thrust liquid rocket engine(LRE), a static performance simulation program for components were made. The components were the thrust chamber (combustion chamber and supersonic nozzle), centrifugal pump (impeller and volute casing), impulse turbine, and flow control devices (control valve and orifice). Simplified mathematical models based on classical thermodynamic and inviscid theories were used to remove complexity and enhance the utility of the program. We examined the results of each program qualitatively for validate each component modeling.

  • PDF

The Study of Aerodynamic Characteristics for the Ram-jet Projectile (렘제트탄의 공기역학적 특성 연구)

  • Park S. J.;Shin P. K.;Lee T. S.;Kim K. R.;Park J. H.;Kim Y. G.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.751-754
    • /
    • 2002
  • The SFU(Solid Fuel Ram-Jet) propulsion is attractive for projectiles because of the combination of high propulsive performance and low system complexity more than conventional projectiles. The Objective of this research was to characterize the inlet aerodynamic characteristics (centerbody & pilot type) in SFRJ. Diffuser static pressure & combustion chamber pressure was tested and the AoA was changed $0^{\circ}\;and\;4^{\circ}$ at Mach number of 3.0 for performance estimate. The performance study of inlet was carried out with the Schlieren system and Supersonic cold-flow system. A Computational fluid dynamic solution is applied internal flow of inlet and the solutions are compared with experimental results.

  • PDF

Numerical Simulation of Mixing and Combustion in a Normal Injection of the Scramjet (초음속 연소기에서의 혼합과 연소현상에 관한 수치해석)

  • Moon, Su-Yeon;Lee, Choong-Won;Sohn, Chang-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.475-480
    • /
    • 2001
  • The flowfield of transverse jet in a supersonic air stream subjected to shock wave turbulent boundary layer interactions is simulated numerically by Generalized Taylor Galerkin(GTG) finite element methods. Effects of turbulence are taken into account with a two-equation $(k-\varepsilon)$ model with a compressibility correction. Injection pressures and slot widths are varied in the present study. Pressure, separation extents, and penetration heights are compared with experimental data. Favorable comparisons with experimental measurements are demonstrated.

  • PDF

Approximate Chemical Jacobian Methods for Reactive Flow Simulations (근사 화학반응 자코비안을 이용한 화학반응 유동해석)

  • Kim Seong-Lyong;Choi Jeong-Yeol;Jeung In-Seuck;Park Yang-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.59-64
    • /
    • 1999
  • The Equations of Chemical kinetics ate very stiff, which forces the use of an implicit scheme. The problem of implicit scheme, however, is that the jacobian must be solved at each time step. In this paper, we examined the approximate chemical jacobian methods such as Gauss-Seidel, Jacobi partial jacobian and diagonalized jacobian that can be stable without full jacobian, We show that Gauss-Seidel jacobian method is stable and accurate as well as full jacobian and that this is more efficient in supersonic combustion problem about $20\%$ than the full jacobian method with same accuracy,

  • PDF

Numerical Study of Flow Characteristics of Scramjet with a Cavity Flameholder (스크램제트 공동 화염 보염기 형상에 따른 유동 특성의 수치적 연구)

  • Jang, Won-Geun;Lee, Hak-Jin;Choe, Seong-Im
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.603-609
    • /
    • 2014
  • 차세대 제트 추진기관으로 주목받고 있는 스크램제트 엔진의 핵심은 연소기 내부에서의 성공적인 초음속 연소를 필요로 한다. 초음속 연소는 공기-연료 혼합(fuel-air mixing)의 정도에 따라 연소효율이 영향을 받게 된다. 공동형 화염 보염기(cavity flameholder)는 재순환 영역(recirculation zone)을 생성하여 연료 혼합의 효율을 높여 지속적인 초음속 연소가 진행될 수 있는 시간을 제공한다. 본 연구에서는 EDISON 전산유체역학 소프트웨어를 이용하여 공동형 화염 보염기를 지나는 초음속 유동의 재순환 영역과 전압력 변화에 대한 전산 해석을 수행하였다. 초기 형상을 생성하여 유동 해석을 수행한 후, 3개의 형상 변수에 대한 매개 변수 연구를 통하여 공동의 형상과 위치에 따른 재순환영역의 제어가 가능함을 확인하였다.

  • PDF

Numerical Quadrature for the Prandtl Meyer Function at High Temperature with Application for Air

  • Zebbiche, Toufik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.9-17
    • /
    • 2008
  • When the stagnation temperature of the combustion chamber or ambient air increases, the specific heats and their ratio do not remain constant any more, and start to vary with this temperature. The gas remains perfect, except, it will be calorically imperfect and thermally perfect. A new generalized form of the Prandtl Meyer function is developed, by adding the effect of variation of this temperature, lower than the threshold of dissociation. The new relation is presented in the form of integral of a complex analytical function, having an infinite derivative at the critical temperature. A robust numerical integration quadrature is presented in this context. The classical form of the Prandtl Meyer function of a perfect gas becomes a particular case of the developed form. The comparison is made with the perfect gas model for aim to present a limit of its application. The application is for air.

Study on Performance Design and Sensitivity of a Liquid Ramjet Engine (액체 램제트 엔진의 성능 설계와 성능 민감도에 관한 연구)

  • Sung, Hong-Gye
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.2
    • /
    • pp.27-32
    • /
    • 2006
  • The performance-design algorithm of a liquid ramjet engine was studied, which showed the comparable results with CFD calculation except the shock-boundary layer interaction region. In addition to the description of the design algorithm, several important design parameters, such as equivalence ratio, combustion efficiency, air capturing factor, and flight Mach number, are evaluated as predicting one of performance factors, Isp, of a typical ramjet engine, so that the flight envelope might not be determined with narrow perspective performance-operation-area in off-design regime.

  • PDF

Heat transfer on a jet vane surface installed in a rocket nozzle (로켓노즐에 장착된 제트베인 표면의 열전달 특성)

  • 유만선;김병기;조형희;황기영;배주찬
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.54-58
    • /
    • 2003
  • Jet vane is an useful component which is installed at the end of a nozzle for the purpose of the posture control and the secure controlling stability during the initial launching of a rocket. Small space for installation and rapid response are considered as its merits but it is ablated thermally and mechanically by the combusted gas having high velocity and temperature produced in a combustion chamber. En this study, as the fundamental study for the ablation analysis of jet vane, the heat transfer into a jet vane which is located in the supersonic flow field.

  • PDF