• Title/Summary/Keyword: supersaturation ratio

Search Result 18, Processing Time 0.025 seconds

Molecular Dynamics Simulation of Cluster-Seed Affects on Heterogeneous Nucleation (분자동력학을 이용한 클러스터핵 주변의 이종핵형성 모사)

  • Suh, Dong-Uk;Jung, Seung-Chai;Yoon, Woong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1885-1890
    • /
    • 2008
  • 3-D heterogeneous nucleation was simulated by classical molecular dynamics (MD), where the Lennard-Jones (LJ) gas and solid cluster-seed molecules have argon and aluminum properties, respectively. There are three shapes of cluster-seeds, cube, rod, and sphere, and three classes of masses and the simulation took place under nine supersaturation ratios, making a total of 81 calculations. Results show that the dimension of the cluster-seed highly affects the rates of cluster development. In order to analyze heterogeneous nucleation above and below the critical supersaturation ratio, growth rate and liquefaction rate were separately defined to supplement the investigation. Design of experiments (DOE) was used for analysis which displayed that the shape and mass of the cluster-seed are prominent for the growth rate, while the supersaturation ratio is most significant followed by the mass for liquefaction rate. The significance of the supersaturation ratio for overall liquefaction suggests that thermal diffusion is more dominant than mass interactions for this system.

  • PDF

Effect of Supersaturation on Morphology of Silicon Carbide Deposits (SiC 증착물의 형상에 미치는 과포화도의 영향)

  • So, Myoung-Gi
    • Journal of Industrial Technology
    • /
    • v.6
    • /
    • pp.13-17
    • /
    • 1986
  • The effect of supersaturation on morphology of silicon carbide by chemical vapor deposition using $CH_3SiCl_3-H_2$ gas mixture system was investigated. The experimental results show that the final structure of silicon carbide deposits is coarser as total pressure increases or ${\alpha}$-ratio decreases. It is believed because supersataration of Si-source decreases as total pressure increases or ${\alpha}$-ratio decreases.

  • PDF

Effects of Temperature and Precursor-concentration on Characteristics of TiO2 Nanoparticles in Chemical Vapor Condensation Process -Part II: Analysis of Particle Formation Estimated by Reaction Factors (화학기상응축 공정에서 TiO2나노입자 특성에 미치는 반응온도와 전구체 농도의 영향 -Part II 분말형성에 대한 반응인자적 분석)

  • Lee, Chang-Woo;Yu, Ji-Hun;Im, Sung-Soon;Yun, Sung-Hee;Lee, Jai-Sung;Choa, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.328-332
    • /
    • 2003
  • Characteristics of $TiO_2$nanoparticles controlled by precursor flow rate and reaction temperature in chemical vapor condensation process were interpreted in the view of decisive reaction factors, i.e. supersaturation ratio, concentration of vapor molecule, collision frequency and rate, and residence time, which directly affect the particle size and size distribution in CVC reactor. As results, the increases of precursor flow rate and reaction temperature induced the increase in the average sizes of $TiO_2$ nanoparticles in CVC reactor by acceleration of coagulation growth due to the increase of collision between $TiO_2$vapor molecules and particles. The effects of reaction factors on the characteristics of$TiO_2$nanoparticles were discussed with considering particle formation process in CVC reactor under given process parameters.

Diamond Synthesis by Acetylen Flame (아세틸렌 불꽃에 의한 다이아몬드 합성)

  • 이윤석;박윤휘;이태근;정수진
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.12
    • /
    • pp.926-934
    • /
    • 1992
  • Uniform diamond films in a few $\textrm{mm}^2$ size and locally isolated diamond single crystals in size of 60 $\mu\textrm{m}$ were synthesized on Si-wafer and Al2O3 substrate by the method of acetylene flame. The effects of substrate temperature and flow ratio of oxygen to acetylene on the morphology of deposited diamond were investigated. According to the observations of growth behavior of diamond on Si substrate with respect to substrate surface pretreatment and flow ratio, it was shown that well faceted diamonds could grow uniformly when flow ratio was above 0.9 and substrates were densely scratched. With increasing substrates temperature, the crystal morphology changes from octahedron bounded by only {111} plane below 850$^{\circ}C$ to cubo-octahedron with almost equal development of {111} and {100} plane in the temperature range of 850∼950$^{\circ}C$. Between 950∼1050$^{\circ}C$, the {111} faces become rough and concave. Above 1050$^{\circ}C$, new crystallites begin to grow on concave {111} surface and overall morphology looks like cubo-octahedron with degenerated {111} faces. These changes of morphology can be understood in terms of the different growth mode of each crystallographic plane with respect to the substrate temperature and supersaturation. And the observed phenomena on {111} planes can be related to the face instability and twin generation.

  • PDF

Optimization of Selective Epitaxial Growth of Silicon in LPCVD

  • Cheong, Woo-Seok
    • ETRI Journal
    • /
    • v.25 no.6
    • /
    • pp.503-509
    • /
    • 2003
  • Selective epitaxial growth (SEG) of silicon has attracted considerable attention for its good electrical properties and advantages in building microstructures in high-density devices. However, SEG problems, such as an unclear process window, selectivity loss, and nonuniformity have often made application difficult. In our study, we derived processing diagrams for SEG from thermodynamics on gas-phase reactions so that we could predict the SEG process zone for low pressure chemical vapor deposition. In addition, with the help of both the concept of the effective supersaturation ratio and three kinds of E-beam patterns, we evaluated and controlled selectivity loss and non-uniformity in SEG, which is affected by the loading effect. To optimize the SEG process, we propose two practical methods: One deals with cleaning the wafer, and the other involves inserting dummy active patterns into the wide insulator to prevent the silicon from nucleating.

  • PDF

Application of thermodynamics to chemical vapor deposition

  • Latifa Gueroudji;Hwang, Nong-Moon
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.09a
    • /
    • pp.1-20
    • /
    • 1998
  • Processing of thin films by chemical vapor deposition (CVD) is accompanied by chemical reactions, in which the rigorous kinetic analysis is difficult to achieve. In these conditions, thermodynamic calculation leads to better understanding of the CVD process and helps to optimise the experimental parameters to obtain a desired product. A CVD phase diagram has been used as guide lines for the process. By determining the effect of each process variable on the driving force for deposition, the thermodynamic limit for the substrate temperature that diamond can deposit is calculated in the C-H system by assuming that the limit is defined by the CVD diamond phase diagram. The addition of iso-supersaturation ratio lines to the CVD phase diagram in the Si-Cl-H system provides additional information about the effects of CVD process variables.

  • PDF

An Experimental Study on Energy Losses in Steam Turbine Cascade Flow (증기터빈 익렬유동의 에너지손실에 관한 실험적 연구)

  • ;;Ahn, Hyung-Joon;Lee, Kwon-Hee
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.3022-3030
    • /
    • 1995
  • The irreversibility of condensation process in the supersonic flow of steam turbine cascade causes the entropy to increase and the total pressure loss to be generated. In the present study, in order to investigate the moist air flow in two dimensional steam turbine cascade made as the configuration of the last stage tip section of the actual steam turbine moving blade, the static and total pressures along suction side of the blade are measured by pressure taps and Pitot tube. The flow field is visualized by a Schlieren system. The effects of stagnation temperature and the degree of supersaturation on energy loss and entropy change in the flow are clearly identified.

Application of thermodynamics to chemical vapor deposition (화학증착에서 열역학의 응용)

  • Latifa Gueroudji
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.1
    • /
    • pp.80-83
    • /
    • 1999
  • Processing of thin films by chemical vapor deposition(CVD) is accompanied by chemical reactions, in which the rigorous kinetic analysis is difficult to achieve. In these conditions, thermodynamic calculation leads to better understanding of the CVD process and helps to optimise the experimental parameters to obtain a desired product. A CVD phase diagram has been used as guide lines for the process. By determining the effect of each process variable on the driving force for deposition, the thermodynamic limit of the substrate temperature for a diamond deposition is calculated in the C-H system by assuming that the limit is defined by the CVD diamond phase diagram. The addition of iso-supersaturation ratio lines to the CVD phase diagram in the Si-Cl-H system provides additional information about the effects of CVD porcess variables.

  • PDF

On the Contrast of Aerosol Size Distribution and Cloud Condensation Nuclei Concentrations between the East and the West of the Korean Peninsula (대관령과 영종도에서 측정한 에어러솔 크기분포 및 CCN 수농도에 관한 연구)

  • Kim, Jong Hwan;Park, Min-Su;Shim, Sungbo;Yum, Seong Soo
    • Atmosphere
    • /
    • v.22 no.1
    • /
    • pp.87-96
    • /
    • 2012
  • Aerosol number concentration ($N_{CN}$), size distribution and cloud condensation nuclei (CCN) concentration ($N_{CCN}$) were measured during 16-21 August 2008 at Daegwallyeong (DG) located in the eastern rural region of the Korean Peninsula. In the very next week (22-29 August 2008) the same aerosol properties were measured at Yeongjong Island (YJ) in the Yellow Sea. $N_{CN}$ for all 3 size cuts (above 3, 6 and 10 nm) was significantly higher at DG than YJ, but $N_{CCN}$ was significantly lower at the former and resulted in the $N_{CCN}/N_{CN}$ ratio more than twice higher at YJ ($0.94{\pm}0.09$ vs. $0.35{\pm}0.15$ at 0.53% supersaturation). The geometric mean diameter at DG, $53{\pm}15nm$, was much smaller than that at YJ, $91{\pm}6nm$, due to the particle formation events that were likely to have occurred continuously at DG. For given mean diameter, aerosols were more likely to act as CCN at YG compared to those at DG.

Capability of Accumulation Mode Aerosols Containing Black Carbon as CCN Observed during the PACDEX Campaign (PACDEX 캠페인 자료로 분석한 블랙카본을 포함한 축적모드 에어로솔의 구름응결핵 가능성)

  • Lee, Si-Hye;Ghim, Young-Sung;Kim, Sang-Woo;Yoon, Soon-Chang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.4
    • /
    • pp.380-391
    • /
    • 2010
  • Airborne in-situ measurements of aerosol/cloud number concentrations were analyzed to investigate the effects of aerosols on warm cloud formation in the Pacific Dust Experiment (PACDEX) during April and May 2007. In the air masses originating from the Asian continent, high concentrations of fine particles including black carbon (BC) were observed when compared to other regions. A strong correlation (r=0.88) between condensation nuclei (CN) having sizes ranging from 0.1 to 1.0 mm ($CN_{0.1-1.0}$) and cloud condensation nuclei (CCN) at 0.4% supersaturation ($CCN_{0.4%}$) suggests that most of the $CN_{0.1-1.0}$ can contribute to cloud formation. The possibility of a cloud droplet formation by BC particles was expected at the high water vapor mixing ratio (WVMR) and the abundance of water-soluble components at the low altitude less than 3 km.