• Title/Summary/Keyword: superposed method

Search Result 79, Processing Time 0.023 seconds

Equivalent Transverse Forces due to Longitudinal Prestressing of Box Girders (박스 거더의 종방향 프리스트레싱에 의한 횡방향 등가하중)

  • 양인환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.955-960
    • /
    • 2003
  • For box girders in which the longitudinal tendon is profiled in the inclined webs. longitudinal prestressing force will induce transverse effects as well as longitudinal ones. In this paper. the method estimating transverse effects induced by longitudinal prestressing is proposed. The transverse effects in the slabs of box girders due to longitudinal prestressing are investigated. Numerical analyses are carried out depending on the parameters such as web inclination and ratio of girder length to tendon eccentricity. Analysis results show that when only prestressing are considered the magnitude of stresses in the slabs of box grder is not so large. However. if the other stresses due to dead and live load et al. are superposed on these stresses. it may be that the longitudinal prestressing effects are significant.

  • PDF

Analysis of Thermal Relaxation Time of Tissues Subject to Pulsed Laser Irradiation (초단파 레이저 조사시 티슈 열완화 시간 분석)

  • Kim, Kyung-Han;Lee, Jae-Hoon;Suh, Jeong
    • Laser Solutions
    • /
    • v.12 no.2
    • /
    • pp.17-25
    • /
    • 2009
  • Two methodologies for predicting thermal relaxation time of tissue subjected to pulsed laser irradiation is introduced by the calculation the optical penetration depth and by the investigation of the temperature diffusion behavior. First approach is that both x-axial and y-axial thermal relaxation times are predicted and they are superposed to achieve the thermal relaxation time (${\tau}_1$) for two-dimensional square tissue model. Another approach to achieve thermal relaxation time (${\tau}_2$) is measuring the time required for local temperature drop until $e^{-1}$ of the maximum laser induced heating.

  • PDF

Two-dimensional Laser Drilling Using the Superposition of Orthogonally Polarized Images from Two Computer-generated Holograms

  • Lee, Hwihyeong;Cha, Seongwoo;Ahn, Hee Kyung;Kong, Hong Jin
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.451-457
    • /
    • 2019
  • Laser processing using holograms can greatly improve processing speed, by spatially distributing the laser energy on the target material. However, it is difficult to reconstruct an image with arrays of closely spaced spots for laser processing, because the specklelike interference pattern prevents the spots from getting close to each other. To resolve this problem, a line target was divided in two, reconstructed with orthogonally polarized beams, and then superposed. Their optical reconstruction was performed by computer-generated holograms and a pulsed laser. With this method, we performed two-dimensional (2D) laser drilling of polyimide film, with a kerf width of $20{\mu}m$ and a total processing length of 20 mm.

Automation of Analysis for Stress Intensity Factor of 3-D Cracks (3차원 균열의 응력확대계수에 대한 해석의 자동화)

  • 이준성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.496-500
    • /
    • 1997
  • This paper describes an automated system for analyzing the stress intensity factors(SIFs) of three-dimensional (3D) cracks. A geometry model, i.e.a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-noded quadratic tetrahedral solid elements are generated by the Delauuay triangulation techniques. The singular elements such that the mid-point nodes near crack fornt are shifted at the quarter-points are automatically placed along the 3D crack front. THe complete finite element (FE) model generated, i.e the mesh with material properties and boundary conditions is given to one of the commercial FE codes, and a stress analysis is performed. The SIFs are calculated using the displacement extrapolation method. To demonstrate practical performance of the present system, a semi- elliptical surface crack in a plate subjected to tension is solved.

  • PDF

Improved Method for Calculating Magnetic Field of Surface-Mounted Permanent Magnet Machines Accounting for Slots and Eccentric Magnet Pole

  • Zhou, Yu;Li, Huaishu;Wang, Wei;Cao, Qing;Zhou, Shi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1025-1034
    • /
    • 2015
  • This paper presented an improved analytical method for calculating the open-circuit magnetic field in the surface-mounted permanent magnet machines accounting for slots and eccentric magnet pole. Magnetic field produced by radial and parallel permanent magnet is equivalent to that produced by surface current according to equivalent surface-current method of permanent magnet. The model is divided into two types of subdomains. The field solution of each subdomain is obtained by applying the interface and boundary conditions. The magnet field produced by equivalent surface current is superposed according to superposition principle of vector potential. The investigation shows harmonic contents of radial flux density can be reduced a lot by changing eccentric distance of eccentric magnet poles compared with conventional surface-mounted permanent-magnet machines with concentric magnet poles. The FE(finite element) results confirm the validity of the analytical results with the proposed model.

Analysis of Three-Dimensional Cracks in Inhomogeneous Materials Using Fuzzy Theory

  • Lee, Yang-Chang;Lee, Joon-Seong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.119-123
    • /
    • 2005
  • This paper describes a fuzzy-based system for analyzing the stress intensity factors (SIFs) of three-dimensional (3D) cracks. 3D finite element method(FEM) was used to obtain the SIF for subsurface cracks and surface cracks existing in inhomogeneous materials. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy theory. Nodes are generated by the bucketing method, and ten-noded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The singular elements such that the mid-point nodes near crack front are shifted at the quarter-points, and these are automatically placed along the 3D crack front. The complete FE model is generated, and a stress analysis is performed. The SIFs are calculated using the displacement extrapolation method. The results were compared with those surface cracks in homogeneous materials. Also, this system is applied to analyze cladding effect of surface cracks in inhomogeneous materials.

Measuring Method of Planar Displacement Referring to The Double Linear Patterns (이중화된 패턴을 참조하는 평면 변위 측정 방법)

  • Park, Sung Jun;Jung, Kwang Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4405-4410
    • /
    • 2015
  • Two-dimensional displacements are obtained from the sandwiched patterns, which superpose two linearly-periodic patterns orthogonally, respectively. The transparent top pattern is identified by deflection of the laser beam due to a difference of refractivity and the opaque bottom pattern is identified by deviation of the beam intensity due to a difference of reflectance. In the sample setup, the top pattern made up of build-up film is manufactured by UV laser machining and the bottom pattern is manufactured by ultra-precision trench machining and deposition for aluminum plate. The proposed decoding method is verified experimentally using the $10{\mu}m$ equally spaced sample patterns and the devised optical system. The Korea Academia-Industrial cooperation Society.

A Study on the Dynamic Response of Cylindrical Wind Turbine Tower Considering Added Mass (부가수질량을 고려한 실린더형 풍력발전기타워의 동적응답연구)

  • Son, Choong-Yul;Lee, Kang-Su;Lee, Jung-Tak
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.348-358
    • /
    • 2008
  • Unlike structures in the air, the vibration analysis of a submerged or floating structure such as offshore structures is possibly only when the fluid-structures is understood, as the whole or part of the structure is in contact with water. Through the comparision between the experimental result and the finite element analysis result for a simple cylindrical model, it was verified that an added mass effects on the cylindrical structure. Using the commercial FEA program ANSYS(v.11.0), underwater added mass was superposed on the mass matrix of the structure. A frequency response analysis of forced vibration in the frequency considered the dynamic load was also performed. It was proposed to find the several important modes of resonance peak for these fixed cylindrical type structures. Furthermore, it is expected that the analysis method and the data in this study can be applied to a dynamic structural design and dynamic performance evaluation for the ground and marine purpose of power generator by wind.

  • PDF

Crack Identification Using Evolutionary Algorithms in Parallel Computing Environment (병렬 환경하의 진화 이론을 이용한 결함인식)

  • Sim, Mun-Bo;Seo, Myeong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1806-1813
    • /
    • 2002
  • It is well known that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a classical optimization technique was adopted by previous researchers. That technique overcame the difficulty of finding the intersection point of the superposed contours that correspond to the eigenfrequency caused by the crack presence. However, it is hard to select a trial solution initially for optimization because the defined objective function is heavily multimodal. A method is presented in this paper, which uses continuous evolutionary algorithms(CEAs). CEAs are effective for solving inverse problems and implemented on PC clusters to shorten calculation time. With finite element model of the structure to calculate eigenfrequencies, it is possible to formulate the inverse problem in optimization format. CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising with high parallel efficiency over about 94%.

Ultrasonic Image of the Side Drilled Holes in SS Reference Block as Combining Bases of Support for Spatial Frequency Response

  • Koo, Kil-Mo;Song, Chul-Hwa;Beak, Won-Pil;Kang, Hee-Young
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.322-326
    • /
    • 2008
  • In this paper, we have studied the images which have been reconstructed by using combination of images acquired by the variation of operating frequency. When inner images have been reconstructed, they have been superposed by the surface state effect. In this case, the images of the phase object can be enhanced by the contrast of inner images. There is a kind of specimen, one is a reference block having 1/4T, 1/2T, 3/4T side drilled holes as main run piping material of the steam generator in nuclear power plants. It has been shown that the two results of defect shapes have better than before in this processing and phase contrast grow about twice. And we have constructed the acoustic microscope by using a quadrature detector that enables to acquire the amplitude and phase of the reflected signal simultaneously. Further more we have studied the reconstruction method of the amplitude and phase images, the enhancement method of the defect images' contrast.

  • PDF