• Title/Summary/Keyword: superplasticizer demand

Search Result 6, Processing Time 0.021 seconds

Performance Analysis of Low-viscosity type Superplasticizer (저점도형 감수제의 성능 분석)

  • Han, Dongyeop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.35-36
    • /
    • 2016
  • Recently, with the increasing demand of high performance of concrete, the mix design of concrete mixture has became low water-to-binder ratio with high binder content. To compensate these trend of mix design, high range water reducer, or superplascizier has been invented to achieve high flowable concrete. Although this superplasticizer provides favorable workability based on its dispersing action on the components of concrete mixture, it has an limitation of decreasing viscosity of the mixture, and thus it is difficult to secure sufficient workability for high performance concrete mixtures with high binder content. To improve the workability of concrete with high viscosity, recently, low-viscosity type superplasticizer was introduced, and in this research, a fundamental properties of low-viscosity type superplasticizer is evaluated.

  • PDF

An Experimental Study on the Ready-Mixed Concrete Manufacture Performance of Ultra-High Strength Concrete using the Crushed Sand (부순모래를 사용한 초고강도 콘크리트의 레미콘 제조성능에 관한 실험적 연구)

  • Rho, Hyoung-Nam;Lim, Hyon-Ung;Choi, Se-Jin;Lee, Seong-Yeon;Lee, Sang-Soo;Song, Ha-Youg
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.25-28
    • /
    • 2007
  • In this study we measured the changes according to time respectively on the basis of 0, 30, 60 and 90 minutes, taking into consideration the decline in fluidity of concrete according to elapsed time to analyze manufacturing capability of batcher plant according to elapsed time of ready-mixed concrete manufactured in batcher plant, and offer basic data for mixture design of ultra-high strength concrete. The proportion of water-binder was 23.55, water content was 160kg/m3, proportion of replacement of crushed sand was 0, 20 and 40% at 3 level, and we applied to the same condition of triaxial component using blast furnace slag powder and silica fume as admixture. And to meet the demand of certain fluidity, we measured respectively on property before and after hardening of ultra-high strength concrete using superplasticizer. As a result of experiment, before hardening of ultra-high strength concrete showed the best fluidity in conditions of crushed sand replacement rates of 20% and superplasticizer composition of 1.95%, but it appeared that fluidity drops as time goes by in the same composition condition. And it appeared that when it comes to hardened, the changes of compression strength according to elapsed time by crushed sand replacement rates were within 1MPa. Therefore, it turned out that the difference of strength according to elapsed time was low and compression strength of 280dys in composition mentioned above appeared highly as 88MPa.

  • PDF

Develop a sustainable wet shotcrete for tunnel lining using industrial waste: a field experiment and simulation approach

  • Jinkun Sun;Rita Yi Man Li;Lindong Li;Chenxi Deng;Shuangshi Ma;Liyun Zeng
    • Advances in concrete construction
    • /
    • v.15 no.5
    • /
    • pp.333-348
    • /
    • 2023
  • Fast infrastructure development boosts the demand for shotcrete. Despite sand and stone being the most common coarse and fine aggregates for shotcrete, excessive exploration of these materials challenges the ecological environment. This study utilized an industrial solid waste, high-titanium heavy slag, blended with steel fibers to form Wet Shotcrete of Steel Fiber-reinforced High-Titanium Heavy Slag (WSSFHTHS). It investigated its workability, shotcrete performance and mechanical properties under different water-to-cement ratios, fly ash content, superplasticizer dosage, and steel fiber content. The tunnel excavation and support were investigated by conducting finite element numerical simulation analysis and was used in 3 tunnel lining pipes in Zhonggouwan tailing pond. The major findings are as follows: (1) The water-to-cement ratio (w/c ratio) significantly impacted the compressive strength of WSSFHTHS. The highest 28-day compressive strength of 60 MPa was achieved when the w/c ratio was 0.38; (2) Adding fly ash improved the workability and shotcrete performance and strength development of WSSFHTHS. The best anti-permeability performance was achieved when the fly ash constituted 15%, with the lowest permeability coefficient of 4.596 × 10-11 cm/s; (3) The optimum superplasticizer dosage for WSSFHTHS is 0.8%. It provided the best workability and shotcrete performance. Excessive dosage resulted in water bleeding and poor aggregate encapsulation, while insufficient dosage decreased flowability and adversely affected shotcrete performance; (4) The dosage of steel fibers significantly impacted the flexural and tensile strength of WSSFHTHS. When the steel fiber dosage was 45 kg/m3, the 28-day flexural and tensile strengths were 8.95 MPa and 6.15 MPa, respectively; (5) By integrating existing shotcrete techniques, the optimal lining thickness was 80 mm for WSSFHTHS per simulation. The results revealed that after using WSSFHTHS, the displacement of the tunnel surrounding the rock significantly improved, with no cracks or hollows, similar to the simulation results.

Investigation on Improve Durability of Fiber-Reinforced High-Strength concrete (섬유보강 고강도 콘크리트의 내구성능 향상에 관한 검토)

  • Lee, Hye-Jin;Ha, Jung-Soo;Kim, Kyu-Jin;Lee, Young-Do;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.93-95
    • /
    • 2013
  • Recently, with the increase in the construction of ultra-high buildings and long-span structures, there is great demand for high-strength concrete which can reduce the structural weight and thickness of member sections. While developing high-strength concrete to meet performance requirements, certain issues at the design stage must also be considered. The issues include diseconomy from a great amount of per-unit cement, spalling failure by fire at ultra-high building, autogenous shrinkage caused by increased hydration activity of binder from use of a superplasticizer. Therefore, the purpose of this study is examined the strain characteristics of Fiber-reinforced-high-strength concrete(FRHSC), which differ from those of general concrete owing to autogenous shrinkage. Based on the experimental data, we proposed an autogenous shrinkage prediction model.

  • PDF

An approach of using ideal gradating curve and coating paste thickness to design concrete performance-(2) Experimental work

  • Wang, H.Y.;Hwang, C.L.;Yeh, S.T.
    • Computers and Concrete
    • /
    • v.10 no.1
    • /
    • pp.35-47
    • /
    • 2012
  • The ideal gradating curve is used in this study to estimate densified aggregate blended ratio and total surface area of aggregate, there by under assigned paste amount of concrete, and coating paste thickness can then be deduced. Four groups of concrete mixtures were prepared and the corresponding concrete properties, such as workability, compression strength, ultrasonic velocity, surface resistivity and chloride ion penetration, were measured and finally the results are interpreted in terms of "coating thickness". The result shows as the coating thickness of the concrete is higher than critical one, the coating thickness on aggregate does affect the workability, and whatever workability is required the superplasticizer can be adjusted to achieve the demand workability. Under a fixed paste quality at the same age, coating paste thickness is inversely proportional to the concrete properties, especially as the coating thickness gets thinner.

Investigating the use of wollastonite micro fiber in yielding SCC

  • Sharma, Shashi Kant;Ransinchung, G.D.;Kumar, Praveen
    • Advances in concrete construction
    • /
    • v.6 no.2
    • /
    • pp.123-143
    • /
    • 2018
  • Self compacting concrete (SCC) has good flowability, passability and segregation resistance because of voluminous cementitious material & high coarse aggregate to fine aggregate ratio, and high free water availability. But these factors make it highly susceptible to shrinkage. Fibers are known to reduce shrinkage in concrete mixes. Until now for conserving cement, only pozzolanic materials are admixed in concrete to yield a SCC. Hence, this study compares the use of wollastonite micro fiber (WMF), a cheap pozzolanic easily processed raw mineral fiber, and flyash in yielding economical SCC for rigid pavement. Microsilica was used as a complimentary material with both admixtures. Since WMF has large surface area ($827m^2/kg$), is acicular in nature; therefore its use in yielding SCC was dubious. Binary and ternary mixes were constituted for WMF and flyash, respectively. Paste mixes were tested for compatibility with superplasticizer and trials were performed on a normal concrete mix of flexural strength 4.5 MPa to yield SCC. Flexural strength test and restrained shrinkage test were performed on those mixes, which qualified self compacting criteria. Results revealed that WMF admixed pastes have high water demand, and comparable setting times to flyash mixes. Workability tests showed that 20% WMF with microsilica (5-7.5%) is efficient enough in achieving SCC and higher flexural strength than normal concrete at 90 days. Also, stress rate due to shrinkage was lesser and time duration for final strain was higher in WMF admixed SCC which encourages its use in yielding a SCC than pozzolanic materials.