• 제목/요약/키워드: superpixel segmentation

검색결과 22건 처리시간 0.027초

KOMPSAT 영상을 활용한 SLIC 계열 Superpixel 기법의 최적 파라미터 분석 및 변화 탐지 성능 비교 (Optimal Parameter Analysis and Evaluation of Change Detection for SLIC-based Superpixel Techniques Using KOMPSAT Data)

  • 정민경;한유경;최재완;김용일
    • 대한원격탐사학회지
    • /
    • 제34권6_3호
    • /
    • pp.1427-1443
    • /
    • 2018
  • 객체 기반 영상 분석은 영상의 복잡도를 낮추는 동시에 영상의 특성을 유지한다는 점에서 픽셀 기반 영상 분석보다 높은 효율성과 정보 활용 가능성을 지닌다. Superpixel은 일반적인 영상 분할보다 작은 영상 단위로 영상을 과분할함으로써 영상 내의 경계를 보다 잘 유지할 수 있다. 이 가운데 SLIC(Simple linear iterative clustering) superpixel 기법은 기존의 기법들보다 높은 품질의 영상 분할 결과를 제시하는 것으로 알려져 있다. 이러한 SLIC 기법의 입력 파라미터인 superpixel의 개수는 영상 분할 결과에 큰 영향을 미침에도 이에 대한 연구는 선행 연구에서 충분히 다루어지지 않았다. 이에 본 연구에서는 KOMPSAT 영상을 이용하여 변화 탐지 활용 연구를 위한 SLIC 계열 superpixel 기법의 최적 파라미터 분석 및 변화 탐지 성능 비교를 수행하였다. 사용된 superpixel 기법은 SLIC, SLIC0(SLIC의 무변수 버전), SNIC(Simple non-iterative clustering) 의 세 가지 기법으로, $5{\times}5$(픽셀)에서 $50{\times}50$(픽셀)의 superpixel 크기 범위에 대해서 superpixel 개수를 지정하여 superpixel 분할 영상을 생성하고 변화 탐지 참조 영상에 대한 재현율을 분석하였다. 이를 통해 얻어진 최적 superpixel 크기를 바탕으로 변화를 탐지하고자 하는 두 영상의 차 영상을 분할한 후 일정 크기의 객체로 clustering하였다. 두 시기(bi-temporal) 영상으로부터 얻어진 공통된 영상경계는 전후 영상에 각각 적용함으로써 각 superpixel의 feature(Lab 색상 차이) 변화를 탐지하였다. 최종적인 변화 탐지 결과는 참조 영상을 통해 그 성능이 분석하였으며, 영상의 과분할 정도가 높지 않더라도 규칙적인 크기와 형태의 superpixel을 통해 높은 변화 탐지 성능을 달성할 수 있음을 확인하였다.

깊이 슈퍼 픽셀을 이용한 실내 장면의 의미론적 분할 방법 (Semantic Segmentation of Indoor Scenes Using Depth Superpixel)

  • 김선걸;강행봉
    • 한국멀티미디어학회논문지
    • /
    • 제19권3호
    • /
    • pp.531-538
    • /
    • 2016
  • In this paper, we propose a novel post-processing method of semantic segmentation from indoor scenes with RGBD inputs. For accurate segmentation, various post-processing methods such as superpixel from color edges or Conditional Random Field (CRF) method considering neighborhood connectivity have been used, but these methods are not efficient due to high complexity and computational cost. To solve this problem, we maximize the efficiency of post processing by using depth superpixel extracted from disparity image to handle object silhouette. Our experimental results show reasonable performances compared to previous methods in the post processing of semantic segmentation.

슈퍼픽셀의 밀집도 및 텍스처정보를 이용한 DBSCAN기반 칼라영상분할 (A Method of Color Image Segmentation Based on DBSCAN(Density Based Spatial Clustering of Applications with Noise) Using Compactness of Superpixels and Texture Information)

  • 이정환
    • 디지털산업정보학회논문지
    • /
    • 제11권4호
    • /
    • pp.89-97
    • /
    • 2015
  • In this paper, a method of color image segmentation based on DBSCAN(Density Based Spatial Clustering of Applications with Noise) using compactness of superpixels and texture information is presented. The DBSCAN algorithm can generate clusters in large data sets by looking at the local density of data samples, using only two input parameters which called minimum number of data and distance of neighborhood data. Superpixel algorithms group pixels into perceptually meaningful atomic regions, which can be used to replace the rigid structure of the pixel grid. Each superpixel is consist of pixels with similar features such as luminance, color, textures etc. Superpixels are more efficient than pixels in case of large scale image processing. In this paper, superpixels are generated by SLIC(simple linear iterative clustering) as known popular. Superpixel characteristics are described by compactness, uniformity, boundary precision and recall. The compactness is important features to depict superpixel characteristics. Each superpixel is represented by Lab color spaces, compactness and texture information. DBSCAN clustering method applied to these feature spaces to segment a color image. To evaluate the performance of the proposed method, computer simulation is carried out to several outdoor images. The experimental results show that the proposed algorithm can provide good segmentation results on various images.

Disparity-based Error Concealment for Stereoscopic Images with Superpixel Segmentation

  • Zhang, Yizhang;Tang, Guijin;Liu, Xiaohua;Sun, Changming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권9호
    • /
    • pp.4375-4388
    • /
    • 2018
  • To solve the problem of transmission errors in stereoscopic images, this paper proposes a novel error concealment (EC) method using superpixel segmentation and adaptive disparity selection (SSADS). Our algorithm consists of two steps. The first step is disparity estimation for each pixel in a reference image. In this step, the numbers of superpixel segmentation labels of stereoscopic images are used as a new constraint for disparity matching to reduce the effect of mismatching. The second step is disparity selection for a lost block. In this step, a strategy based on boundary smoothness is proposed to adaptively select the optimal disparity which is used for error concealment. Experimental results demonstrate that compared with other methods, the proposed method has significant advantages in both objective and subjective quality assessment.

Unsupervised Single Moving Object Detection Based on Coarse-to-Fine Segmentation

  • Zhu, Xiaozhou;Song, Xin;Chen, Xiaoqian;Lu, Huimin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권6호
    • /
    • pp.2669-2688
    • /
    • 2016
  • An efficient and effective unsupervised single moving object detection framework is presented in this paper. Given the sparsely labelled trajectory points, we adopt a coarse-to-fine strategy to detect and segment the foreground from the background. The superpixel level coarse segmentation reduces the complexity of subsequent processing, and the pixel level refinement improves the segmentation accuracy. A distance measurement is devised in the coarse segmentation stage to measure the similarities between generated superpixels, which can then be used for clustering. Moreover, a Quadmap is introduced to facilitate the refinement in the fine segmentation stage. According to the experiments, our algorithm is effective and efficient, and favorable results can be achieved compared with state-of-the-art methods.

향상된 세일리언시 맵과 슈퍼픽셀 기반의 효과적인 영상 분할 (Efficient Image Segmentation Algorithm Based on Improved Saliency Map and Superpixel)

  • 남재현;김병규
    • 한국멀티미디어학회논문지
    • /
    • 제19권7호
    • /
    • pp.1116-1126
    • /
    • 2016
  • Image segmentation is widely used in the pre-processing stage of image analysis and, therefore, the accuracy of image segmentation is important for performance of an image-based analysis system. An efficient image segmentation method is proposed, including a filtering process for super-pixels, improved saliency map information, and a merge process. The proposed algorithm removes areas that are not equal or of small size based on comparison of the area of smoothed superpixels in order to maintain generation of a similar size super pixel area. In addition, application of a bilateral filter to an existing saliency map that represents human visual attention allows improvement of separation between objects and background. Finally, a segmented result is obtained based on the suggested merging process without any prior knowledge or information. Performance of the proposed algorithm is verified experimentally.

슈퍼픽셀특성을 이용한 칼라영상분할 (Color Image Segmentation Using Characteristics of Superpixels)

  • 이정환
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 춘계학술대회
    • /
    • pp.649-651
    • /
    • 2012
  • 본 논문에서는 슈퍼픽셀특성을 이용한 칼라영상분할을 연구한다. 슈퍼픽셀은 특성이 비슷한 인접화소들을 묶어서 하나의 큰 화소로 취급하는 것으로 고속영상처리 및 영상인식을 위해 사용될 수 있다. 본 연구에서는 슈퍼픽셀특성이 비교적 우수한 $La^*b^*$ 칼라특징공간에서 슈퍼픽셀을 구하고 클러스터링 및 기울기기반 분할 알고리즘을 적용한 영상분할을 연구한다.

  • PDF

Crab Region Extraction Method from Tidal Flat Images Using Superpixels

  • Park, Sanghyun
    • 한국정보기술학회 영문논문지
    • /
    • 제9권2호
    • /
    • pp.29-39
    • /
    • 2019
  • Tidal Flats are very important natural resource and various efforts have been made to protect it from environmental pollutions. The projects to monitor the environmental changes by periodically observing the creatures in tidal flats are underway. However, they are being done inefficiently by people directly observing. In this paper, we propose an object segmentation method that can be applied to the applications which automatically monitor the living creatures in tidal flats. In the proposed method, a foreground map representing the location of objects is obtained by using a temporal difference method, and then a superpixel method is applied to detect the detailed boundary of an object. The region of a crab is extracted finally by combining the foreground map and the superpixel information. Experimental results show that the proposed method separates crab regions from a tidal flat image easily and accurately.

슈퍼픽셀 DBSCAN 군집 알고리즘을 이용한 용융아연도금 강판의 부식이미지 분석 (Corrosion image analysis on galvanized steel by using superpixel DBSCAN clustering algorithm)

  • 김범수;김연원;이경황;양정현
    • 한국표면공학회지
    • /
    • 제55권3호
    • /
    • pp.164-172
    • /
    • 2022
  • Hot-dip galvanized steel(GI) is widely used throughout the industry as a corrosion resistance material. Corrosion of steel is a common phenomenon that results in the gradual degradation under various environmental conditions. Corrosion monitoring is to track the degradation progress for a long time. Corrosion on steel plate appears as discoloration and any irregularities on the surface. This study developed a quantitative evaluation method of the rust formed on GI steel plate using a superpixel-based DBSCAN clustering method and k-means clustering from the corroded area in a given image. The superpixel-based DBSCAN clustering method decrease computational costs, reaching automatic segmentation. The image color of the rusty surface was analyzed quantitatively based on HSV(Hue, Saturation, Value) color space. In addition, two segmentation methods are compared for the particular spatial region using their histograms.

영상의 복잡도를 고려한 슈퍼픽셀 분할 방법 (Superpixel Segmentation Scheme Using Image Complexity)

  • 박상현
    • 한국정보기술학회논문지
    • /
    • 제16권12호
    • /
    • pp.85-92
    • /
    • 2018
  • 복잡한 영상처리 알고리즘을 사용할 때 계산량을 줄이기 위해 슈퍼픽셀을 사용한다. 슈퍼픽셀은 특성이 유사한 픽셀들을 군집화하여 하나의 그룹으로 만드는 방법이다. 슈퍼픽셀은 영상처리의 전단계로 사용되기 때문에 빠르게 생성할 수 있어야 하고 영상의 에지 성분들을 잘 보존하여야 한다. 본 논문에서는 에지 성분을 잘 보존하면서도 계산량이 많지 않은 슈퍼픽셀 생성 방법을 제안한다. 제안하는 방법에서는 먼저 기존의 k-mean 방법을 이용하여 영상의 슈퍼픽셀을 충분히 생성하고, 생성된 슈퍼픽셀들을 분석하여 유사한 슈퍼픽셀을 병합하는 방식으로 최종 슈퍼픽셀을 생성한다. 슈퍼픽셀을 병합할 때는 슈퍼픽셀에 대해서만 유사도를 측정하기 때문에 추가되는 계산량은 많지 않다. 실험 결과는 제안하는 방법으로 생성된 슈퍼픽셀이 기존 방법에 의해 생성된 슈퍼픽셀에 비해 보다 정확하게 에지 성분들을 보존하는 것을 보여준다.