• 제목/요약/키워드: superoxide dismutase.

검색결과 2,396건 처리시간 0.025초

Superoxide Dismutase가 백서의 실험적 치은염과 3T3 섬유모 세포의 활성에 미치는 영향 (THE EFFECT OF SUPEROXIDE DISMUTASE ON EXPERIMENTAL GINGIVITIS AND ACTIVITY OF 3T3 FIBROBLAST)

  • 김윤성;유형근;강현구;신형식
    • Journal of Periodontal and Implant Science
    • /
    • 제25권2호
    • /
    • pp.222-238
    • /
    • 1995
  • Inflammatory cells may produce active species of oxygen in antimicrobial defense. While such species can directly damage surrounding tissue, their major secondary role may be to mediate important components of the inflammatory response. Superoxide dismutase, antioxidant, have significant anti-inflammatory properties in rheumatoid arthritis, ischemic tissue injury and gastrointestinal disease. Increased oxidative product formation diseases. And superoxide dismutase produced by Porphyromonas Gingivalis is resistant to killing by polymorphonuclear leukocyte. The purpose of this study was to investigate on the effects of superoxide dismutase in 3T3 fibroblast and in experimental gingivitis in the rats. The effect of superoxide dismutase(SOD) to cell morphology and cell activity was measured in cultured mouse 3T3 fibroblast. After experimental gingivitis were induced by lipopolysaccharide(LPb) and bovine serum albumin(BSA), injection of SOD were done. WBC count and histologic findings were observed at 1, 2, 3, and 7 days. The results were as follows; 1. There was a little difference between LPS treated groups and SOD treated groups in 3T3 fibroblast morpholoy. 2. There was no difference between only SOD treated groups (except SOD 150U at 3days) and control in 3T3 fibroblast activity. 3. LPS $0.5{\mu}g/ml$ and SOD treated groups (except 150U) had decreased 3T3 fibroblast activity and no significant difference at 3 days. 4. LPS $5.0{\mu}g/ml$ and SOD treated groups were significantly increased cell activity of 3T3 fibroblast than control group at 1 day(P<0.05). 5. In LPS induced gingivitis, the number of leukocytes in SOD treated was significantly decreased than in saline treated at 1 day(P<0.05). 6. In histopathologic findings of LPS or BSA induced gingivitis, inflammatorycell infiltration in SOD treated groups were less than in saline treated group at 1, 2 and 3 days.

  • PDF

Production of Superoxide Dismutase by Deinococcus radiophilus

  • Yun, Young-Sun;Lee, Young-Nam
    • BMB Reports
    • /
    • 제36권3호
    • /
    • pp.282-287
    • /
    • 2003
  • The production of superoxide dismutase (SOD) varied in Deinococcus radiophilus, the UV resistant bacterium, depending upon different phases of growth, UV irradiation, and superoxide treatment. A gradual increase in total SOD activity occurred up to the stationary phases. The electrophoretic resolution of the SOD in cell extracts of D. radiophilus at each growth phase revealed the occurrence of MnSOD throughout the growth phases. The SOD profiles of D. radiophilus at the exponential phase received oxidative stress by the potassium superoxide treatment or UV irradiation also revealed the occurrence of a single SOD. However, these treatments caused an increase in SOD activity. The data strongly suggest that D. radiophilus has only one species of SOD as a constitutive enzyme, which seems to be a membrane-associated protein.

Paraquat 저항성 망초의 protective 효소 (Protective Enzymes of Paraquat-Resistant Conyza bonariensis)

  • 김희주;황을철
    • Applied Biological Chemistry
    • /
    • 제43권1호
    • /
    • pp.46-51
    • /
    • 2000
  • 망초(Conyza bonariensis)에서 제초제 paraquat 저항성을 구명하기 위해 paraquat가 생성하는 superoxide 라디칼과 과산화수소 등의 유해 산소 물질을 제거하는 데에 관련된 효소의 활성을 저항성 종과 감수성 종의 망초에서 측정하였다. 경작지 부근에 자라는 망초는 비경작지에 자라는 망초에 비해 paraquat 저항성이 강하였다. 국내에서 paraquat를 자주 살포하는 지역에서 저항성 종의 망초가 출현하고 있음을 처음으로 보고한다. 저항성 종의 superoxide dismutase의 활성, ascorbate peroxidase의 활성, 그리고 glutathione reductase의 활성은 감수성의 그것에 비해 각각 약 20%, 44%, 그리고 64% 높게 나타났다. 이러한 결과로부터 paraquat에 대한 망초의 저항성은 superoxide dismutase, ascorbate peroxidase, 그리고 glutathione reductase 등으로 구성된 효소의 유해 산소 물질을 제거하는 효율성에 부분적으로 달려 있을 수 있다고 사료된다.

  • PDF

녹차카테킨이 지질과산화 및 Superoxide Dismutase에 미치는 영향 (Effects of Green Tea Catechins on the Lipid Peroxidation and Superoxide Dismutase)

  • 강원식;이윤희;정현희;강민경;김택중;홍진태;윤여표
    • 한국식품위생안전성학회지
    • /
    • 제16권1호
    • /
    • pp.41-47
    • /
    • 2001
  • 녹차카테킨(GTC)의 항산화 작용을 알아보고자 in vitro와 in vivo에서 지질과산화와 superoxide dismutase(SOD), catalase 활성에 미치는 영향에 대한 실험을 행하였다. In vitro 시험계에서의 항산화활성 실험결과, GTC는 peroxide value와 과산화지질 생성을 유의성 있게 억제시켰고, SOD 활성이 매우 높았다. 또한 GTC를 rat에 경구투여 한 후 항산화활성실험 결과, GTC는 $CCl_4$로 유도된 rat의 간 microsome의 지질과산화를 유의성 있게 억제시켰으며, SOD와 catalase 활성을 유의성 있게 증가시켰다. 따라서 GTC는 암과 노화의 예방과 관련이 되는 항산화 활성이 있는 것을 알 수 있었다.

  • PDF

Deletion of Superoxide Dismutase Gene of Bombyx mori Nuclear Polyhedrosis Virus Affects Viral DNA Replication

  • Wang, Wenbing;Song, Zhixiu;Ji, Ping;Wu, Jun;Zhang, Zhifang;He, Jialu;Wu, Xiangfu
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제9권2호
    • /
    • pp.225-228
    • /
    • 2004
  • Superoxide dismutase (SOD) is an important enzyme which catalyzes superoxide radicals to hydrogen peroxide. A Cu, Zn sod-like gene was found in Bombyx mori nuclear polyhedrosis virus encoding 151 amino acids. To demonstrate its function, a recombinant virus named dsBmNPV with deleted sod gene was constructed. It was discovered that the sod gene was not essential for viral replication. Studies on growth of budded virus in BmN cells and superoxide dismutase and catalase activities in vivo after dsBmNPV infection showed that the titer of dsBmNPV decreased obviously comparing to wild type BmNPV, the sod gene was effective on genomic DNA replication of baculovirus, the peak of SOD activity of silkworm infected with wt-BmNPV appeared between 36 and 48 hrs post infection, and with dsBmNPV, it did not appear. And the changes of CAT activity after infection were similar to SOD activity.

The Virulence of Vibrio vulnificus is Affected by the Cellular Level of Superoxide Dismutase Activity

  • Kang, In-Hye;Kim, Ju-Sim;Lee, Jeong-K.
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권8호
    • /
    • pp.1399-1402
    • /
    • 2007
  • The virulence of superoxide dismutase (SOD) mutants of Vibrio vulnificus, as tested by intraperitoneal injection into mice, decreases in the order of sodC mutant, sodA mutant, and sodB mutant lacking CuZnSOD, MnSOD, and FeSOD, respectively. The survival of SOD mutants under superoxide stress also decreases in the same order. The virulence of soxR mutant, which is unable to induce MnSOD in response to superoxide, is similar to that of the sodA mutant, as the survival of the soxR mutant under superoxide stress is similar to that of the sodA mutant. Consistently, the lowered survival of the soxR mutant is complemented not only with soxR but also with sodA. Thus, the virulence of V. vulnificus is significantly affected by the cellular level of SOD activity, and an increase in SOD level through MnSOD induction by SoxR under superoxide stress is essential for virulence.

Streptomyces subrutilus P5의 천연 Fe superoxide dismutase와 N-말단 6xHis-태그가 결합된 Fe superoxide dismutase의 활성비교 (Comparison of enzyme activities of the native and N-terminal 6xHis-tagged Fe supreoxide dismutase from Streptomyces subrutilus P5)

  • 박중호;김재헌
    • 미생물학회지
    • /
    • 제52권2호
    • /
    • pp.230-235
    • /
    • 2016
  • 본 연구는 Streptomyces subrutilus P5의 천연 Fe superoxide dismutase (FeSOD)와 유전자 재조합 기술로 생산된 6xHis-태그가 결합된 Fe superoxide dismutase (6xHis- FeSOD)의 활성을 비교하여 6xHis-태그의 효소에 대한 영향을 알아보기 위하여 수행되었다. 두 효소 모두 최적 pH는 7로 동일하였으나 6xHis-태그에 의해서 pH 범위는 축소되었다. 천연 효소는 pH 4-9의 범위에서 안정성을 보인 반면 6xHis-FeSOD는 pH 9에서 안정성이 상실되었다. 두 효소의 최적 온도는 차이가 없으나 열 안정성에 있어서는 천연 효소는 $40^{\circ}C$ 이하에서 720분까지 안정성을 유지하였으나 6xHis-FeSOD는 $20^{\circ}C$에서도 360분 이내에 활성을 잃는 것으로 나타났다. $H_2O_2$의 6xHis-FeSOD에 대한 저해는 0.5 mM에서 나타났다. 따라서 6xHis-FeSOD는 효소활성은 유지되더라도 열 안정성이 크게 감소되는 결과를 얻었다. 이것은 6xHis-태그가 활성부위 보다는 단백질 전체 구조에 더 많은 영향을 미친 결과라고 생각되었다.

한우 무손상 적혈구의 superoxide 및 과산화수소 제거능력 (Scavenge of superoxide and hydrogen peroxide by bovine intact red blood cells)

  • 조종후;박상열
    • 대한수의학회지
    • /
    • 제38권2호
    • /
    • pp.273-279
    • /
    • 1998
  • The ability of bovine intact red blood cells to scavenge superoxide and hydrogen peroxide by superoxide dismutase, catalase and glutathione peroxidase was investigated. Intact red cells(up to 0.4%) suspensions did not inhibit ferricytochrome c reduction by superoxide in the superoxide generating system. On the other hand, intact red cell(0.4%) suspensions almost completely inhibit ferrocytochrome c oxidation by hydrogen peroxide. The ability of intact red cells to scavenge hydrogen peroxide was mainly attributed to either membrane bound catalase or glutathione peroxidase. The scavenge of hydrogen peroxide by 0.1~0.2% intact red cells showed a trend of dependence on mainly glutathione peroxidase. However, at blood cell concentration higher than 0.3%, the process depended upon peroxidase-independent scavengers like catalase. Enhancement of ferrocytochrome c oxidation by red cells treated with aminotriazole proved that the protection against hydrogen peroxide was due to catalase, while the protection in the presence of glutathione indicated scavenging effect of glutathione peroxidase against hydrogen peroxide.

  • PDF

인슐린비 의존성 당뇨병 환자에서 출상이 적혈구의 지질과산화 및 항산화효소 슈퍼옥시드 디스뮤타제에 미치는 영향 (Effects of Red Ginseng on the Lipid Peroxidation of Erythrocyte and Antioxidant Superoxide Dismutase (SOD) Activity In NIDDM Patients)

  • 최경묵;이은종
    • Journal of Ginseng Research
    • /
    • 제21권3호
    • /
    • pp.153-159
    • /
    • 1997
  • Living organisms have antioxidant enzymes, such as superoxide dismutase, catalase SE glutathione peroxidase, that protect themselves from the toxic effect of superoxide free radicals. Some report says that intracellular oxidation stress is involved in pathogenesis of chronic complications of diabetes mellitus. This study was performed to evaluate the effect of red ginseng on lipid peroxidation of red blood cell and antioxidant SOD activity of serum in NIDDM patients. As a result, there were trends for decrease of lipid peroxidases of RBC and Increase of SOD activity of serum in ginseng group but that were not statistically significant. Therefore, we suggest long term and large sized control study is necessary to confirm the protective effects of red ginseng on oxidative damage in NIDDM patients.

  • PDF

Characterization of Superoxide Dismutase in Lactococcus lactis

  • Chang, Woo-Suk;So, Jae-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권6호
    • /
    • pp.732-736
    • /
    • 1999
  • The superoxide dismutase (SOD) in Lactococcus lactis was measured quantitatively and qualitatively under various culture conditions. The L. lactis SOD was induced by oxidative stress. As the concentration of paraquat to produce superoxide radicals increased, the growth of L. lactis decreased with concomitant increase of SOD activity. The SOD activity was found to be growth-phase dependent: when aerobically grown cells entered to the stationary phase, the activity increased gradually until the late stationary phase. From inhibition studies, L. lactis SOD was found to be insensitive to KCN and $H_2O_2$ which are known to inhibit Cu/ZnSOD and FeSOD, respectively. Moreover, as the concentration of manganese in the medium increased, the activity of SOD also increased. These data strongly suggested that L. lactis possessed a single manganese-containing SOD (MnSOD). Finally, a putative sod gene fragment of 510 bp was identified in L. lactis using a polymerase chain reaction (PCR) with degenerate primers designed from the deduced DNA sequences of known SOD genes.

  • PDF