Browse > Article

The Virulence of Vibrio vulnificus is Affected by the Cellular Level of Superoxide Dismutase Activity  

Kang, In-Hye (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Kim, Ju-Sim (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Lee, Jeong-K. (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.8, 2007 , pp. 1399-1402 More about this Journal
Abstract
The virulence of superoxide dismutase (SOD) mutants of Vibrio vulnificus, as tested by intraperitoneal injection into mice, decreases in the order of sodC mutant, sodA mutant, and sodB mutant lacking CuZnSOD, MnSOD, and FeSOD, respectively. The survival of SOD mutants under superoxide stress also decreases in the same order. The virulence of soxR mutant, which is unable to induce MnSOD in response to superoxide, is similar to that of the sodA mutant, as the survival of the soxR mutant under superoxide stress is similar to that of the sodA mutant. Consistently, the lowered survival of the soxR mutant is complemented not only with soxR but also with sodA. Thus, the virulence of V. vulnificus is significantly affected by the cellular level of SOD activity, and an increase in SOD level through MnSOD induction by SoxR under superoxide stress is essential for virulence.
Keywords
Superoxide dismutase; virulence; Vibrio vulnificus;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Amabile-Cuevas, C. F. and B. Demple. 1991. Molecular characterization of the soxRS genes of Escherichia coli: Two genes control a superoxide stress regulon. Nucleic Acids Res. 19: 4479-4484   DOI   ScienceOn
2 Clements, M. O., S. P. Watson, and S. J. Foster. 1999. Characterization of the major superoxide dismutase of Staphylococcus aureus and its role in starvation survival, stress resistance, and pathogenicity. J. Bacteriol. 181: 3898- 3903
3 Ju, H.-M., I.-G. Hwang, G..-J. Woo, T. S. Kim, and S. H. Choi. 2005. Identification of the Vibrio vulnificus fexA gene and evaluation of its influence on virulence. J. Microbiol. Biotechnol. 15: 1337-1345   과학기술학회마을
4 Keen, N. T., S. Tamaki, D. Kobayashi, and D. Trollinger. 1988. Improved broad-host-range plasmid for DNA cloning in Gram-negative bacteria. Gene 70: 191-197   DOI   ScienceOn
5 Lee, J. H., S. Y. Jeong, and S. H. Choi. 2006. Regulatory characteristics of the Vibrio vulnificus putAP operon encoding proline dehydrogenase and proline permease. J. Microbiol. Biotechnol. 16: 1285-1291   과학기술학회마을
6 Lee, H.-J., K.-J. Park, A. Y. Lee, S. G. Park, B. C. Park, K.-H. Lee, and S.-J. Park. 2003. Regulation of fur expression by RpoS and Fur in Vibrio vulnificus. J. Bacteriol. 185: 5891-5896   DOI   ScienceOn
7 Lim, M. S., M. H. Lee, J. H. Lee, H.-M. Ju, N. Y. Park, H. S. Jeong, J. E. Rhee, and S. H. Choi. 2005. Identification and characterization of the Vibrio vulnificus malPQ operon. J. Microbiol. Biotechnol. 15: 616-625   과학기술학회마을
8 Rhee, J. E., J. H. Rhee, P. Y. Ryu, and S. H. Choi. 2002. Identification of the cadBA operon from Vibrio vulnificus and its influence on survival to acid stress. FEMS Microbiol. Lett. 208: 245-251   DOI   ScienceOn
9 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
10 Kim, J.-S., S. H. Choi, and J. K. Lee. 2006. Lysine decarboxylase expression of Vibrio vulnificus is induced by SoxR in response to superoxide stress. J. Bacteriol. 188: 8586-8592   DOI   ScienceOn
11 Park, N. Y., J. H. Lee, B. C. Lee, T. S. Kim, and S. H. Choi. 2006. Identification and characterization of the wbpO gene essential for lipopolysaccharide synthesis in Vibrio vulnificus. J. Microbiol. Biotechnol. 16: 808-816   과학기술학회마을
12 Kim, J.-S., M.-H. Sung, D.-H. Kho, and J. K. Lee. 2005. Induction of manganese-containing superoxide dismutase is required for acid tolerance in Vibrio vulnificus. J. Bacteriol. 187: 5984-5995   DOI   ScienceOn
13 Blake, P. A., R. E. Weaver, and D. G. Hollis. 1980. Diseases of humans (other than cholera) caused by vibrios. Annu. Rev. Microbiol. 34: 341-367   DOI   ScienceOn
14 Reed, L. J. and H. Muench. 1938. A simple method of estimating fifty percent endpoints. Am. J. Hyg. 27: 493-497
15 Simon, R., U. Priefer, and A. Puhler. 1983. A broad host mobilization system for in vivo genetic engineering: Transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1: 37-45
16 McCord, J. M. and I. Fridovich. 1969. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244: 6049-6055
17 Milton, D. L., R. O'Toole, O. Horstedt, and H. Wolf-Watz. 1996. Flagellin A is essential for the virulence of Vibrio anguillarum. J. Bacteriol. 178: 1310-1319   DOI
18 Beauchamp, C. and I. Fridovich. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44: 276-287   DOI   ScienceOn
19 Kang, I.-H., J.-S. Kim, E.-J. Kim, and J. K. Lee. 2007. Cadaverine protects Vibrio vulnificus from superoxide stress. J. Microbiol. Biotechnol. 17: 176-179   과학기술학회마을
20 Rhee, J. E., H.-M. Ju, U. Park, B. C. Park, and S. H. Choi. 2004. Identification of the Vibrio vulnificus cadC and evaluation of its role in acid tolerance. J. Microbiol. Biotechnol. 14: 1093-1098
21 Rhee, J. E., K. S. Kim, and S. H. Choi. 2005. CadC activates pH-dependent expression of the Vibrio vulnificus cadBA operon at a distance through direct binding to an upstream region. J. Bacteriol. 187: 7870-7875   DOI   ScienceOn