• 제목/요약/키워드: superior cervical sympathetic ganglion block

검색결과 5건 처리시간 0.021초

상경부교감신경절블록은 백서의 영구국소뇌허혈에서 초기의 뇌손상에는 영향을 미치지 못한다 (Superior Cervical Sympathetic Ganglion Block may not Influence Early Brain Damage Induced by Permanent Focal Cerebral Ischemia in Rats)

  • 김현혜;임정길;신진우;심지연;이동명
    • The Korean Journal of Pain
    • /
    • 제21권1호
    • /
    • pp.33-37
    • /
    • 2008
  • Background: Cerebral blood vessels are innervated by sympathetic nerves from the superior cervical ganglion (SCG). The purpose of the present study was to evaluate the neuroprotective effect of superior cervical sympathetic ganglion block in rats subjected to permanent focal cerebral ischemia. Methods: Thirty male Sprague-Dawley rats (270-320 g) were randomly assigned to one of three groups (control, lidocaine and ropivacaine). A brain injury was induced in all rats by middle cerebral artery occlusion with a nylon thread. The animals of the local anesthetic group received $30{\mu}l$ of 2% lidocaine or 0.75% ropivacaine in the SCG. Neurologic scores were assessed 24 hours after brain injury. Brain samples were then collected. The infarct and edema ratios were measured by 2.3.5-triphenyltetrazolium chloride staining. Results: There were no differences in the death rates, neurologic scores, or infarction and edema ratios between the three groups. Conclusions: These findings suggest that superior cervical sympathetic ganglion block may not influence the brain damage induced by permanent focal cerebral ischemia in rats.

토끼에서 경부 교감신경절의 무수 에틸 알코올에 의한 화학적 차단 (Chemical Neurolytic Block with Absolute Ethyl Alcohol on Cervical Sympathetic Ganglion in Rabbits)

  • 강유진;서재현
    • The Korean Journal of Pain
    • /
    • 제7권2호
    • /
    • pp.162-169
    • /
    • 1994
  • Blockade of cervicothoracic sympathetic ganglion (stellate ganglion controls pain on face, head, neck, shoulder, upper limbs, and upper chest, including their viscera and sympathetically maintained pain. This procedure also increases blood flow to the above areas and relieves hyperreactivity of sympathetic nervous system. Clinically, repeated stellate ganglion blocks with local anesthetic agent may become difficult with complications such as accidental intravascular or subdural injection, recurrent laryngeal nerve or bracheal plexus paralysis, pneumothorax and edema on injection site. Therefore, at times long-term cervicothoracic ganglion block with neurolytics is necessitated but its applications are prohibited by the critical structures surrounding ganglion. There are also few reports of neurolytic stellate ganglion block. This study was performed to observe the complications, gross changes of surrounding structures, and microscopic findings of ganglion cells after neurolytic block and to certify the possibility of clinical use of neruolytic stellate ganglion block. The unilateral superior cervical sympathetic ganglion of rabbit was blocked with absolute ethyl alcohol 0.4 ml at the level of cricoid cartilage. Normal ganglion was used as a control and 5 animals were sacrificed at each intervals of 7, 15 and 50 days after block. The results were as follows; 1) All experimental animals showed no specific changes of behavior, motor function. No necrotic tissues were present in the block area during the observation period. There were some gross scar tissues along the fascia of muscles surrounding the needle injection site, but gross atrophy of muscles or injured major vessels were not found. 2) Microscopically, structures of normal ganglion of rabbit were very similar to those of humans. Seven days after absolute ethyl achohol injection there were marked edema of ganglion cells and nuclei with irregular nuclear membrane. Some of the ganglion cells lost their nuclei and showed degenerative changes. Fifteen days after block, cell edema were decreased and loss of the Nissl's body was prominant. The ganglion cell structures looked close to normal but the cytoplasm and nucleus were generally contracted 50 days after block. These results suggest absolute ethyl alcohol injection on cervical sympathetic ganglion with above method mainly blocks pre- and post-synaptic fibers and the long-term neurolytic blockade of this ganglion may be possible in rabbits.

  • PDF

백서의 국소 뇌허혈/재관류로 인한 신경손상에서 상경부 교감 신경절 블록의 급성기 및 장기 보호효과 (The Effects of Superior Cervical Sympathetic Ganglion Block on the Acute Phase Injury and Long Term Protection against Focal Cerebral Ischemia/Reperfusion Injury in Rats)

  • 전혜영;정경운;최재문;김유경;신진우;임정길;한성민
    • The Korean Journal of Pain
    • /
    • 제21권2호
    • /
    • pp.119-125
    • /
    • 2008
  • Background: Cerebral blood vessels are innervated by sympathetic nerves from the superior cervical ganglia (SCG), and these nerves may influence the cerebral blood flow. The purpose of the present study was to evaluate the neuroprotective effect of superior cervical sympathetic ganglion block in rats that were subjected to focal cerebral ischemia/reperfusion injury. Methods: Eighty male Sprague-Dawley rats (270-320 g) were randomly assigned to one of two groups (the ropivacaine group and a control group). In all the animals, brain injury was induced by middle cerebral artery (MCA) reperfusion that followed MCA occlusion for 2 hours. The animals of the ropivacaine group received $30{\mu}l$ of 0.75% ropivacaine, and their SCG. Neurologic score was assessed at 1, 3, 7 and 14 days after brain injury. Brain tissue samples were then collected. The infarct ratio was measured by 2.3.5-triphenyltetrazolium chloride staining. The terminal deoxynucleotidyl transferase mediated dUTP-biotin nick-end labeled (TUNEL) reactive cells and the cells showing caspase-3 activity were counted as markers of apoptosis at the caudoputamen and frontoparietal cortex. Results: The death rate, the neurologic score and the infarction ratio were significantly less in the ropivacaine group 24 hr after ischemia/reperfusion injury. The number of TUNEL positive cells in the ropivacaine group was significantly lower than those values of the control group in the frontoparietal cortex at 3 days after injury, but the caspase-3 activity was higher in the ropivacaine group than that in the control group at 1 day after injury. Conclusions: The study data indicated that a superior cervical sympathetic ganglion block may reduce the neuronal injury caused by focal cerebral ischemia/reperfusion, but it may not prevent the delayed damage.

Changes in blood flow at the mandibular angle and Horner syndrome in a rat model of superior cervical ganglion block

  • Kubota, Kazutoshi;Sunada, Katsuhisa
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • 제18권2호
    • /
    • pp.105-110
    • /
    • 2018
  • Background: A stellate ganglion block (SGB) causes increased blood flow in the maxillofacial region, exhibiting the potential for regenerative effects in damaged tissue. The focus of this study was to understand the efficacy of SGB for regenerative effects against nerve damage. A rat model of the superior cervical ganglion block (SCGB) was created instead of SGB, and facial blood flow, as well as sympathetic nervous system function, were measured. Methods: A vertical incision was made on the left side of the neck of a Wistar rat, and a 5-mm resection of the superior cervical ganglion was performed at the back of the bifurcation of the internal and external branches of the left common carotid artery. Blood flow in the skin at the mandibular angle and mean facial temperature were measured using a laser-Doppler blood flow meter and a thermographic camera, respectively, over a 5-week period after the block. In addition, the degree of ptosis and miosis were assessed over a period of 6 months. Results: The SCGB rat showed significantly higher blood flow at the mandibular angle on the block side (P < 0.05) for 3 weeks, and significantly higher skin temperature (P < 0.05) for 1 week after the block. In the SCGB rat, ptosis and miosis occurred immediately after the block, and persisted even 6 months later. Conclusions: SCGB in rats can cause an increase in the blood flow that persists over 3 weeks.

상경부교감신경절블록이 백서의 국소 뇌허혈/재관류로 인한 뇌 손상에 미치는 영향 (Effect of Superior Cervical Sympathetic Ganglion Block on Brain Injury Induced by Focal Cerebral Ischemia/Reperfusion in a Rat Model)

  • 이애령;윤미옥;김현혜;최재문;전혜영;신진우;임정길
    • The Korean Journal of Pain
    • /
    • 제20권2호
    • /
    • pp.83-91
    • /
    • 2007
  • Background: Cerebral blood vessels are innervated by sympathetic nerves that originate in the superior cervical ganglia (SCG). This study was conducted to determine the effect of an SCG block on brain injury caused by focal cerebral ischemia/reperfusion in a rat model. Methods: Male Sprague-Dawley rats (270-320 g) were randomly assigned to one of three groups (lidocaine, ropivacaine, and control). After brain injury induced by middle cerebral artery (MCA) occlusion/reperfusion, the animals were administered an SCG bloc that consisted of $30{\mu}l$ of 2% lidocaine or 0.75% ropivacaine, with the exception of animals in the control group, which received no treatment. Twenty four hours after brain injury was induced, neurologic scores were assessed and brain samples were collected. The infarct and edema ratios were measured, and DNA fragmented cells were counted in the frontoparietal cortex and the caudoputamen. Results: No significant differences in neurologic scores or edema ratios were observed among the three groups. However, the infarct ratio was significantly lower in the ropivacaine group than in the control group (P < 0.05), and the number of necrotic cells in the caudoputamen of the ropivacaine group was significantly lower than in the control group (P < 0.01). Additionally, the number of necrotic and apoptotic cells in theropivacaine group were significantly lower than inthe control group in both the caudoputamen and the frontoparietal cortex (P < 0.05). Conclusions: Brain injury induced by focal cerebral ischemia/reperfusion was reduced by an SCG block using local anesthetics. This finding suggests that a cervical sympathetic block could be considered as another treatment option for the treatment of cerebral vascular diseases.