• Title/Summary/Keyword: supergiant stars

Search Result 14, Processing Time 0.018 seconds

BVR PHOTOMETRY OF SUPERGIANT STARS IN HOLMBERG II

  • Sohn Y.J.;Chang S.W.;Kim D.Y.;Kim J.W.;Kim S.H.;Lee J.E.;Lee J.G.;Lee J.M.;Lee M.Y.;Lee S.Y.;Lee U.S.;Park B.K.;Park H.E.
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • We report the photometric properties in BVR bands for the resolved bright supergiant stars in the dwarf galaxy Holmberg II. The color-magnitude diagrams and color-color diagram of 374 resolved stars indicate that the majority of the member stars are supergiant stars with a wide range of spectral type between B-K. A comparison with theoretical evolutionary tracks indicates that the supergiant stars in the observed field have progenitor masses between ${\sim}10M_{\bigodot}\;and\;20M_{\bigodot}$. The exponent of luminosity function in V is in good agreement with those of the Small and Large Magellanic Clouds.

Near-infrared photometric properties of red-supergiant stars in nearby galaxies : NGC 4214, NGC 4736, and NGC 5194 / NGC 5195

  • Jung, DooSeok;Chun, San-Hyun;Choudhury, Samyaday;Sohn, Young-Jong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.62.1-62.1
    • /
    • 2016
  • We study the near-infrared photometric properties of red-supergiant stars (RSGs) in three nearby galaxies located within 15 Mpc: NGC 4214, NGC 4736 and NGC 5194 / NGC 5195. The near-infrared (JHK) imaging data were obtained using the WFCAM detector mounted on UKIRT telescope in Hawaii. We used the DAOPHOT/ALLSTAR pacakge to carry out the photometry. We applied MARCS synthetic fluxes to estimate the effective temperatures and luminosities of the RSGs in all the three galaxies. The results were plotted in the Hertzsprung-Russell(H-R) diagram along with the theoretical evolutionary tracks with different masses. We explore the spatial correlation between the RSGs and H II regions by examing the H-R diagram of the RSGs in the dominant H II regions for each of these three galaxies.

  • PDF

Red supergiant stars in NGC 4449, NGC 5055, and NGC 5457

  • Chun, Sang-Hyun;Sohn, Young-Jong;Asplund, Martin;Casagrande, Luca
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.44.2-45
    • /
    • 2016
  • We present near-infrared photometric properties of red supergiant stars (RSGs) in three galaxies NGC 4449, NGC 5055 and NGC 5457. The near-infrared imaging data of WFCAM UKIRT were used and combined with optical archive data to identify the RSGs in the galaxies. We found that the RSGs can be identified from the foreground Galactic stars in (i-K, ri) colour-colour diagram. The effective temperatures and luminosities of the identified RSGs are estimated from JHK photometry using MARCS model. In the H-R diagram, the majority of RSGs in the galaxies are distributed between $logL/L{\odot}=4.8$ and 5.7, and their effective temperature and luminosities agree with the current evolutionary tracks with masses in the range $9-30M{\odot}$. We also compared the spatial distribution of RSGs with the HII regions. A tight spatial correlation between RSGs and HII region was found in NGC 4449 and NGC 5457. We do not find a clear metallicity dependance on the RSG effective temperature in the three galaxies, but the maximum luminosity of the three galaxies is constant at $logL/L{\odot}{\sim}5.6$. Additional spectroscopy data, including photometry are essential to examine whether the physical properties of RSGs change with metallicity.

  • PDF

Metallicity-dependent mixing length in evolution models of red supergiant stars in IC 1613

  • Chun, Sang-Hyun;Yoon, Sung-Chul;Oh, Heeyoung
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.50.2-50.2
    • /
    • 2021
  • There is increasing evidence that the convective mixing length (α) in stellar evolution models depends on metallicity of stars. In order to confirm a more precise metallicity-dependent mixing length trend, we investigate the effective temperature and metallicity of 14 red supergiant stars (RSGs) in the irregular dwarf galaxy IC 1613 using the near-infrared spectra observed with the MMIRS on the MMT telescope. From the synthetic spectral fitting to the observed spectra, we find that the mean metallicity is about [Fe/H]=0.69 with a weak bimodal distribution. We also find that the effective temperature of RSGs in IC 1613 is higher by about 250 K than that of the SMC on average. We compare the RSG position with stellar evolutionary tracks on the HR diagram, finding that models with α = 2.2-2.4 H_p can best reproduce the effective temperatures of the RSGs in IC 1613. It is evident that the mixing length values for IC 1613 is lower than that of the Milky Way. This result supports our previous study on a metallicity-dependent mixing length: mixing length decreases with decreasing metallicity of host galaxies. However, this dependency becomes relatively weak for RSGs having a metallicity equal to or less than the SMC metallicity.

  • PDF

Evolutionary properties of red supergiants with MESA

  • Chun, Sang-Hyun;Jung, Moo-Keon;Kim, Dong uk;Kim, Jihoon;Yoon, Sung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.42.1-42.1
    • /
    • 2017
  • We investigate the evolutionary properties of red supergiant stars (RSGs), using stellar evolution model of Modules for Experiments in Stellar Astrophysics (MESA). In this study, we calculate models with mass range of 9-39M_sun and several different convection parameters (e.g. mixing length, overshooting, and semiconvection) at SMC, LMC, Milky Way, and M31 metallicities. We compare the calculated evolutionary tracks with observed RSGs in SMC, LMC, Milky Way and M31, and discuss appropriate input physical parameters in model calculation. We find that a larger mixing length parameter is necessary for M31 metallicity to fit the positions of RSGs in H-R diagram, compared to lower metallicity environments. Theoretically predicted numbers of yellow supergiant stars (YSGs) are also compared with the observed population. We find that Ledoux models with semiconvection can better explain the number of YSGs. Finally, we investigate the final radius, final star mass, and final hydrogen envelope mass of RSGs and discussed the their properties as type II-P supernova progenitors.

  • PDF

THE CONTRIBUTION OF STELLAR WINDS TO COSMIC RAY PRODUCTION

  • Seo, Jeongbhin;Kang, Hyesung;Ryu, Dongsu
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.2
    • /
    • pp.37-48
    • /
    • 2018
  • Massive stars blow powerful stellar winds throughout their evolutionary stages from the main sequence to Wolf-Rayet phases. The amount of mechanical energy deposited in the interstellar medium by the wind from a massive star can be comparable to the explosion energy of a core-collapse supernova that detonates at the end of its life. In this study, we estimate the kinetic energy deposition by massive stars in our Galaxy by considering the integrated Galactic initial mass function and modeling the stellar wind luminosity. The mass loss rate and terminal velocity of stellar winds during the main sequence, red supergiant, and Wolf-Rayet stages are estimated by adopting theoretical calculations and observational data published in the literature. We find that the total stellar wind luminosity due to all massive stars in the Galaxy is about ${\mathcal{L}}_w{\approx}1.1{\times}10^{41}erg\;s^{-1}$, which is about 1/4 of the power of supernova explosions, ${\mathcal{L}}_{SN}{\approx}4.8{\times}10^{41}erg\;s^{-1}$. If we assume that ~ 1 - 10 % of the wind luminosity could be converted to Galactic cosmic rays (GCRs) through collisonless shocks such as termination shocks in stellar bubbles and superbubbles, colliding-wind shocks in binaries, and bow-shocks of massive runaway stars, stellar winds might be expected to make a significant contribution to GCR production, though lower than that of supernova remnants.

Identifying clusters of red supergiants in Galactic plane using 2MASS and GAIA G band colors

  • Lee, Jae-Joon;Chun, Sang Hyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.80.2-80.2
    • /
    • 2021
  • Galactic young massive clusters are the ideal laboratories to study massive stellar evolution. Unfortunately, such objects are rare. Of particular interest are so-called Red Supergiant Clusters (RSGCs) that are currently only found toward the Scutum-Crux Galactic arm. Confirming their nature as RSGC is often not straight-fortward as distinguishing RSGs from AGB stars is still difficult even with high spectral resolution spectra. Here we report that broad band colors using 2MASS JHK and GAIA G band data can be useful in reducing the AGB contamination, thus providing selection criteria that effectively reveal the known RSGCs with negligible false positives. On the other hand, we suggest that RSGC4, one of the proposed RSGC candidates, may not be a cluster of RSGs as their colors are not compatible with our selection criteria. We discuss the nature of these stars together with our IGRINS spectroscopic observations. We also employ the same selection criteria to search for RSGC candidates in other parts of the plane, resulting in no prominent candidates.

  • PDF

Catalog of the Paα-emitting Sources observed in the Carina Region

  • Kim, Il-Joong;Pyo, Jeonghyun;Jeong, Woong-Seob
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.66.2-66.2
    • /
    • 2021
  • We list up the Paα-emitting sources observed in the Carina Region (l = 276°-296°) using the MIRIS Paα Galactic Plane Survey data. A total of 201 sources are cataloged. Out of them, 118 sources are coincident with those in the WISE H II region catalog. 52 H II region candidates are newly confirmed as definite H II regions by detecting the Paα recombination lines. For the remaining 83 sources, we search the corresponding objects in the SIMBAD database. 26 point-like sources are associated with planetary nebulae or emission-line stars (such as Wolf-Rayet and Blue supergiant stars). Also, we carry out aperture photometry to measure Paα fluxes for the sources that show circular features without overlapping with other bright sources. For the whole Galactic Plane, the complete Paα-emitting source catalog is in progress.

  • PDF

A likely exoplanet around F5 supergiant ${\alpha}$ Persei near the Cepheid instability strip

  • Lee, Byeong-Cheol;Han, In-Woo;Park, Myeong-Gu;Kim, Kang-Min
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.28.2-28.2
    • /
    • 2011
  • To search for and study the nature of the long-periodic variations of massive stars, we have been carrying out a precise radial velocity (RV) survey for supergiants. Here, we present high-resolution RV measurements of ${\alpha}$ Per which lies near the Cepheid instability strip from November 2005 to February 2011 using the fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) at Bohyunsan Optical Astronomy Observatory (BOAO). The orbital solution yields a period of 129 days, a 2K amplitude of 80 m/s, and an eccentricity of 0.1. Assuming a possible stellar mass of 7.3 $M{\bigodot}$, we estimate the minimum mass for the planetary companion to be 7.5 MJup with the orbital semi-major axis of 0.97 AU. We do not find the correlation between RV variations and chromospheric activity indicator (Ca II H & K region). The Hipparcos photometry and bisector velocity span (BVS) do not show any obvious correlations with RV variations. These analyses suggest that ${\alpha}$ Per is a pulsating supergiant that hosts an exoplanet. If the 129 days variations of ${\alpha}$ Per do not come from an exoplanet but Cepheid-like pulsations, the theoretical boundary of the Cepheid instability strip may need to be extended to the bluer side.

  • PDF