• Title/Summary/Keyword: superframe

Search Result 72, Processing Time 0.019 seconds

A Study on Real Time Traffic Performance Improvement Considering QoS in IEEE 802.15.6 WBAN Environments (IEEE 802.15.6 WBAN 환경에서 QoS를 고려한 실시간 트래픽 성능향상에 관한 연구)

  • Ro, Seung-Min;Kim, Chung-Ho;Kang, Chul-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.4
    • /
    • pp.84-91
    • /
    • 2011
  • Recently, WBAN(Wireless Body Area Network) which has progressed standardization based on IEEE 802.15.6 standardization is a network for the purpose of the short-range wireless communications within around 3 meters from the inner or outer human body. Effective QoS control technique and data efficient management in limited bandwidth such as audio and video are important elements in terms of users and loads in short-range wireless networks. In this paper, for high-speed WBAN IEEE 802.15.6 standard, the dynamic allocation to give an efficient bandwidth management and weighted fair queueing algorithm have been proposed through the adjustment of the super-frame about limited data and Quality of Service (QoS) based on the queuing algorithm. Weighted Fair Queueing(WFQ) Algorithm represents the robust performance about elements to qualitative aspects as well as maintaining fairness and maximization of system performance. The performance results show that the dynamic allocation expanded transmission bandwidth five times and the weighted fair queueing increased maximum 24.3 % throughput and also resolved delay bound problem.

Vulnerability Analysis and Detection Mechanism against Denial of Sleep Attacks in Sensor Network based on IEEE 802.15.4 (IEEE 802.15.4기반 센서 네트워크에서 슬립거부 공격의 취약성 분석 및 탐지 메커니즘)

  • Kim, A-Reum;Kim, Mi-Hui;Chae, Ki-Joon
    • The KIPS Transactions:PartC
    • /
    • v.17C no.1
    • /
    • pp.1-14
    • /
    • 2010
  • IEEE 802.15.4[1] has been standardized for the physical layer and MAC layer of LR-PANs(Low Rate-Wireless Personal Area Networks) as a technology for operations with low power on sensor networks. The standardization is applied to the variety of applications in the shortrange wireless communication with limited output and performance, for example wireless sensor or virtual wire, but it includes vulnerabilities for various attacks because of the lack of security researches. In this paper, we analyze the vulnerabilities against the denial of sleep attacks on the MAC layer of IEEE 802.15.4, and propose a detection mechanism against it. In results, we analyzed the possibilities of denial of sleep attacks by the modification of superframe, the modification of CW(Contention Window), the process of channel scan or PAN association, and so on. Moreover, we comprehended that some of these attacks can mount even though the standardized security services such as encryption or authentication are performed. In addition to, we model for denial of sleep attacks by Beacon/Association Request messages, and propose a detection mechanism against them. This detection mechanism utilizes the management table consisting of the interval and node ID of request messages, and signal strength. In simulation results, we can show the effect of attacks, the detection possibility and performance superiorities of proposed mechanism.