• Title/Summary/Keyword: supercritical $CO_2$ curing

Search Result 6, Processing Time 0.026 seconds

A Basic Study on the Development of Optimum Carbonation Curing Techniques for Concrete Using Supercritical CO2 (초임계 CO2를 활용한 콘크리트의 최적 탄산화양생기법 개발에 관한 기초적 연구)

  • Hong, Sung-Jun;Ryu, Dong-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.91-92
    • /
    • 2022
  • This study is a basic study on carbonation curing technology of concrete using supercritical CO2, and carbonation curing was carried out by exposing concrete to supercritical CO2 for a certain period of time. In the case of conventional carbonation curing, long-term curing was performed for several weeks by controlling the concentration of CO2, but by using supercritical CO2, more rapid carbonation curing was carried out using constant temperature and pressure conditions to improve durability through surface modification of concrete. This experiment was conducted with the goal of deriving the optimal carbonation curing conditions by measuring the carbonation depth by exposing concrete for a certain period of time to conditions above the supercritical level. As a result, it was confirmed that the carbonation depth increased as the curing time increased, and the curing time could be shortened compared to the carbonation curing according to the existing CO2 concentration.

  • PDF

A Fundamental Study on Supercritical CO2 Curing of Resource-Recycling Concrete Containing Concrete Sludge Waste as Main Materials (레미콘 슬러지 고형분을 주재료로 한 자원순환형 콘크리트의 초임계 CO2 양생에 관한 기초적 연구)

  • Sim, Sang-Rak;Lee, Young-Do;Ryu, Dong-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.27-28
    • /
    • 2022
  • In this study, the mechanical properties of resource-recycling concrete containing concrete sludge waste as main materials was compared depending on whether supercritical CO2 curing was applied for the realization of CCU technology. After supercritical CO2 curing, the compressive strength of the steam-cured specimen was lowered, but it was confirmed that the compressive strength of the underwater-cured specimen was improved.

  • PDF

Manufacture of Cement-Bonded Particleboards from Korean Pine and Larch by Curing of Supercritical CO2 Fluid

  • Suh, Jin-Suk;Hermawan, Dede;Kawai, Shuichi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.41-50
    • /
    • 2000
  • Cement-bonded particleboard is being used as outdoor siding material all over the world, because this composite particularly bears a light weight, high resistance against fire, decay, and crack by cyclic freezing and thawing, anti-shock property, and strength enhancement. Construction systems are currently changing into a frame-building style and wooden houses are being constructed with prefabrication type. Therefore, they require a more durability at outdoor-exposed sides. In this study, the cement hydration property for Korean pine particle, Japanese larch particle and face- and middle layer particles (designated as PB particle below) used in Korean particleboard-manufacturing company was investigated, and the rapid manufacturing characteristics of cement-bonded particleboard by supercritical $CO_2$ curing was evaluated. Korean pine flour showed a good hydration property, however, larch flour showed a bad one. PB particle had a better hydration property than larch flour. The addition of $Na_2SiO_3$ indicated a negative effect on hydration, however, $MgCl_2$ had a positive one. Curing by supercritical $CO_2$ fluid gave a conspicuous enhancement in the performances of cement-bonded particleboards compared to conventional curing. $MgCl_2$ 3%-added PB particle had the highest properties, and $MgCl_2$ 1%-added Korean pine particle had the second class with the conditions of cement/wood ratio of 2.7, a small fraction-screened particle and supercritical curing. On the contrary, the composition of non-hammermilled or large fraction-screened particle at cement/wood ratio of 2.2 was poorer. Also, the feasibility for actual use of 3%-added, small PB particle-screened fraction was greatest of all the conventional curing treatments. Relative superiority of supercritical curing vs. conventional curing at dimensional stability was not so apparent as in strength properties. Through the thermogravimetric analysis, it was ascertained that the peak of a component $CaCO_3$ was highest, and the two weak peaks of calcium silicate hydrate and ettringite and $Ca(OH)_2$ were present in supercritical treatment. Accordingly, it was inferred that the increased formation of carbonates in board contributes to strength enhancement.

  • PDF

Property enhancement of lightweight aggregate by carbonation processing (인공경량골재의 탄산화 반응에 따른 물성향상에 관한 연구)

  • Park, Junyoung;Kim, Yootaek;Choi, Yunjae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.5
    • /
    • pp.254-259
    • /
    • 2012
  • The mechanical property enhancement was studied using fly ash produced from fluidized bed type boiler in power plant, which contains a lot of Ca component being used to carbonate for $CO_2$ fixation in the lightweight aggregates made of cement and some portion of fly ash as a cement substitution under the supercritical condition. Specimens having various fly ash substitution rates and curing periods were carbonated under the supercritical condition at $40^{\circ}C$. The weight change rate, carbonation rate by TG/DTA analysis, 1% Phenolphthalein test, specific gravity and mechanical compression strength test were performed to observe the mechanical property enhancement of the cemented materials after carbonation under the supercritical condition and to make sure those could be classified as lightweight aggregates having specific gravity under 2.0.

Carbonation Behavior of Lightweight Foamed Concrete Using Coal Fly Ash

  • Lee, Jae Hoon;Lee, Ki Gang
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.354-361
    • /
    • 2016
  • The purpose of this study was to prepare lightweight foamed concrete by mixing coal fly ash of circulating fluidized bed combustion(CFBC) with cement, and to develop uses for recycling by analyzing carbonation behavior resulting from a change in conditions for pressurized carbonation. For concrete, CFBC coal fly ash was mixed with Portland cement to the water-binder ratio of 0.5, and aging was applied at room temperature after 3 days of curing at $20^{\circ}C$, RH 60%. For carbonation, temperature was fixed at $60^{\circ}C$ and time at 1 h in the use of autoclave. Pressures were controlled to be $5kgf/cm^2$ and the supercritical condition of $80kgf/cm^2$, and gas compositions were employed as $CO_2$ 100% and $CO_2$ 15%+N2 85%. In the characteristics of produced lightweight concrete, the characteristics of lightweight foamed concrete resulting from carbonation reaction were affirmed through rate of weight change, carbonation depth test, air permeability, and processing analysis for the day 28 specimen. Based on these results, it is concluded that the present approach could provide a viable method for mass production of eco-friendly lightweight foamed concrete from CFBC coal fly ash stabilized by carbonation.

Structural Development of Polypropylene Foam by Crosslinking and Processing Conditions (가교도와 공정 조건에 따른 폴리프로필렌 발포체 구조 변화)

  • 황대영;한갑동;홍다윗;이규일;이기윤
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.529-537
    • /
    • 2000
  • The effects of the gel content on the cell structures of PP sheets by using an electron-curing system were investigated. Three extruded PP sheets crosslinked by three different doses were used for the batch foaming process with the supercritical state $CO_2$. Experiments were also performed in order to study the effects of the gel content, saturation pressure and temperature on cell structures. Then foaming conditions, such as temperature and duration of time, were changed. The amount of gas absorbed into PP samples was not affected by gel contents and the operating condition of saturation pressure, which was higher than 2000 psi. The foam cells of PP with a low gel content grew irregularly at a higher foaming temperature and for a longer duration of foaming time. However, PP samples with high gel content showed even cell structures and narrow tell size distributions under the severe conditions of high foaming temperatures and long duration of foaming time.

  • PDF