• Title/Summary/Keyword: superconductor-metal composite

Search Result 3, Processing Time 0.025 seconds

Ni Coating Characteristics of High K Capacitor Ceramic Powders

  • Park, Jung-Min;Lee, Hee-Young;Kim, Jeong-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.339-339
    • /
    • 2007
  • Metal coating on ceramic powder has long been attracting interest for various applications such as superconductor where the brittle nature of high temperature ceramic superconductor was complemented by silver coating and metalloceramics where mechanical property improvement was achieved via electroless plating. More recently it has become of great interest in embedded passive device applications since metal coating on ceramic particles may result in the enhancement of the dielectric properties of ceramic-polymer composite capacitors. In our study, nickel ion-containing solution was used for coating commercial capacitor-grade $BaTiO_3$ powder. After filtering process, the powder was dried and heat-treated in 5% forming gas at $900^{\circ}C$. XRD and TEM were utilized for the observation of crystallization behavior and morphology of the particles. It was found that the nickel coating characteristics were strongly dependent on the several parameters and processing variables, such as starting $BaTiO_3$ particle size, nickel source, solution chemistry, coating temperature and time. In this paper, the effects of these variables on the coating characteristics will be presented in some detail.

  • PDF

Fabrication and Fault Test Results of Bi-2212/Cu-Ni Tubes for Superconducting Fault Current Limiting Elements (Bi-2212/Cu-Ni 튜브로 제작한 초전도 한류소자의 단락사고시험 결과)

  • Oh, S.Y.;Yim, S.W.;Yu, S.D.;Kim, H.R.;Hyun, O.B.
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.45-49
    • /
    • 2008
  • For the development of superconducting fault current limiters (SFCLs), fault current limiting elements were fabricated out of Bi-2212 bulk tubes and tested. The SFCL elements consisted of tube shaped Bi-2212 bulks and metal shunts for the stabilizers. Firstly, the Bi-2212 bulk tubes were processed based on a design of monofilar coils in order to acquire large resistance and high voltage rating. 300 mm-long Bi-2212 tubes were designed to have the current path of 410 cm in length with 24 turns and 41 mm in diameter. The processed monofilar coil, as designed, had 300 A $I_c$ at 77 K. The fabricated superconducting monofilar coils were affixed to Cu-Ni alloy as that of stabilizers. The Cu-Ni alloys were processed to have the same shape of the superconducting monofilar coils. The Cu-Ni coil had resistivity of 32 ${\mu}{\Omega}$-cm at 77 K and 37 ${\mu}{\Omega}$-cm at 300 K. The metal shunts were attached to the outside of the Bi-2212 monofilar coil by a soldering technique. After the terminals made of copper were attached to both ends of the superconductor-metal shunt composite, the gap between the turns and the surface of the elements was filled with an epoxy and a dense mesh made of FRP in order to enhance the mechanical strength. The completed SFCL elements went through fault tests, and we confirmed that the voltage rating of 143 $V_{rms}$ (E =0.35 $V_{rms}$/cm) could be accomplished.

  • PDF