• Title/Summary/Keyword: superconducting state

Search Result 300, Processing Time 0.024 seconds

Analysis of Hysteresis Characteristics of Flux-Lock Reactor (자속구속 리액터의 히스테리시스 특성 분석)

  • Lim, Sung-Hun;Choi, Hyo-Sang;Kang, Hyeong-Gon;Ko, Seok-Cheol;Lee, Jong-Hwa;Han, Byoung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.255-258
    • /
    • 2003
  • The hysteresis characteristics of flux-lock reactor, which is an essential component of flux-lock type superconducting fault current limiter (SFCL), was investigated. The hysteresis loss of iron core in flux-lock type SFCL does not happen due to its winding's structure especially in the normal state. From the equivalent circuit for the flux-lock type SFCL and the fault current limiting experiments, the hysteresis curves could be drawn. Through the hysteresis curves together with the fault current level due to the inductance ratio for the 1st and 2nd winding, the increase of the number of turns in the 2nd winding of the flux-lock type SFCL had a role to prevent the iron core from saturation.

  • PDF

Cooling Water Utility of Future Clean Energy Source KSTAR (미래 청정에너지원 KSTAR의 냉각수설비)

  • Lee, J.M.;Kim, Y.J.;Park, D.S.;Lim, D.S.
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.596-601
    • /
    • 2006
  • Because of insufficiency of energy resources and pollution of environment, it is necessary to develop alternative energy sources. Nuclear fission energy is used widely for source of electric Power but being restricted due to radioactivity problem. Nuclear fission is highlighted as the new generation of nuclear energy and researched worldwide because of low risk of radiation effect. The representatives of fusion research is China's EAST, KSTAR of Korea and ITER of world. Korea Superconducting Tokamak Advanced Research(KSTAR) project is on progress for the completion in August, 2007. In this study, the research of utility system for KSTAR be carried out. The utility system of KSTAR is consist of water cooling & heating system, $N_2$ gas system, DI water system, service water system and instrument air & auto control system. The progress of KSTAR utility system is under commissioning state after construction completion. The optimal operation scenario will be verified during commissioning and adopted to the KSTAR operation.

  • PDF

A study on the current limiting characteristics and magnetic analysis of the non-inductively wound coil (타입에 따른 무유도 권선형 코일의 한류 특성연구 및 자장해석)

  • Jang, Jae-Young;Park, Dong-Keun;Chang, Ki-Sung;Na, Jin-Bae;Kim, Won-Cheol;Chung, Yood-Do;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.25-29
    • /
    • 2009
  • To reduce the power loss in normal state, non-inductively wound high temperature superconducting (HTS) coils are used for fault current limiter (FCL) application. Non-inductively wound coils can be classified into two types: solenoid type and pancake type. These two types have different electrical and thermal and mechanical characteristics due to their winding structure difference. This paper deals with the current limiting characteristics, magnetic field analysis of the two coils. Simulation using finite element method (FEM) was used to analyze the magnetic field distribution and inductance of the coils. Short circuit test using stabilizer-free coated conductor (CC) was also carried out. We can compare the characteristics of the two types of coil by using the data obtained from simulation and short circuit test. We confirmed the feasibility of FCL application by the analysis about the characteristics of non-inductively wound coil using CC.

Transient loss analysis of non-insulation high temperature superconducting coil using the field-based data profiling method

  • Hoon Jung;Yoon Seok Chae;June Hee Han;Ji Hyung Kim;Seung Hoon Lee;Ho Chan Kim;Young Soo Yoon;Ho Min Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.3
    • /
    • pp.38-42
    • /
    • 2023
  • The evaluation of no-insulation (NI) high-temperature superconducting (HTS) typically uses the lumped equivalent circuit (LEC) model. Constant parameters in the NI HTS LEC model accurately predict voltage and central magnetic field at currents below the critical current. However, it is difficult to find constant circuit parameters that simultaneously satisfy the measured voltage and magnetic field under overcurrent conditions. Recent research highlights changes in contact resistance during transient conditions, which may impact power loss estimation in NI HTS coils. Therefore, we confirm the influence of contact resistance changes on loss calculation in the transient state for NI HTS coil. To achieve this, we introduce a measurement data analysis method based on the LEC model and compare it with the LEC model using constant circuit parameters.

Switching behavior in Peramlloy/Niobium/Permalloy trilayer

  • Hwang, Tae-Jong;Kim, Dong Ho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.17-20
    • /
    • 2014
  • We have investigated the effect of temperature and bias current on the stability of the inverse spin-switch effect in Permalloy(Py)/Nb/Permalloy pseudo spin-valves. The inverse spin-switch operates between two orientations of the ferromagnetic moments of Py layers; parallel (ON) and antiparallel-domain (OFF) state. Measuring time scans of the resistance changes between the ON and OFF state, ${\Delta}R_{ON-OFF}$, while alternating magnetic fields between the two states at various temperatures and bias currents, revealed that enhancement of ${\Delta}R_{ON-OFF}$ is a key factor to achieve successful operation of superconducting spin switch.

Fabrication of High Tc Superconductor using Thermal Pyrolysis Method (열분해법에 의한 초전도체 합성)

  • Lee Sang-Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.785-789
    • /
    • 2006
  • BiSrCaCuO(2223) superconductor was fabricated by the thermal pyrolysis method. The superconducting precursor produced by the dehydration of the gel at $120^{\circ}C$ for 12 h is not in the amorphous state as expected but in a crystalline state. In this paper, the establishment of fabrication condition was examined so as to improve the related properties to the practical use of BiSrCaCuO superconductor, and we reported the production of the BiSrCaCuO by the pyrolysis method.

Electrical Properties of HTS Using Chemical Process (Bi 소결체의 전기적 특성)

  • Lee, Sang-Heon;Choi, Yong;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.34-35
    • /
    • 2007
  • A high Tc superconducting with a nominal composition of BSSCCO was prepared by the citarte method. The solid precursor produced by the dehydration of the gel at $120^{\circ}C$ for 12h is not in the amorphous state as expected but in a crystalline state. X-ray diffraction peaks of nearly the same angular position as the peaks of high Tc phase were observed in the precursor. After pyrolysis at $400^{\circ}C$ and calcination at $840^{\circ}C$ for 4h. the (001) peak of the high Tc phase was cleary observed.

  • PDF

Pressure-Temperature Phase Diagram of $(TMTSF)_2BF_4$ ($(TMTSF)_2BF_4$의 압력-온도 상태도 연구)

  • Jo, Y.J.
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.24-29
    • /
    • 2012
  • $(TMTSF)_2BF_4$ containing non-centrosymmetric anions is well known to exhibit a metal insulator transition around 37 K by ordering of the anions with a $q_2$=(1/2, 1/2, 1/2) wave vector. We established pressure-temperature phase diagram of the $(TMTSF)_2BF_4$ compound and showed that it can belong to the general phase diagram of the $(TMTSF)_2X$ family. Application of hydrostatic pressure decreases the anion ordering transition temperature and the superconducting state is finally stabilized below 3.77 K under 7.7 kbar. Magnetoresistance measurement on the $(TMTSF)_2BF_4$ under 7.8 kbar is performed but neither the field-induced spin-density-wave state nor the rapid oscillation is observed up to 9 T.

Towards searching for Majorana fermions in topological insulator nanowires

  • Kim, Hong-Seok;Doh, Yong-Joo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.1
    • /
    • pp.6-9
    • /
    • 2019
  • Developing a gate-tunable, scalable, and topologically-protectable supercurrent qubit and integrating it into a quantum circuit are crucial for applications in the fields of quantum information technology and topological phenomena. Here we propose that the nano-hybrid supercurrent transistors, a superconducting quantum analogue of a transistor, made of topological insulator nanowire would be a promising platform for unprecedented control of both the supercurrent magnitude and the current-phase relation by applying a voltage on a gate electrode. We believe that our experimental design will help probing Majorana state in topological insulator nanowire and establishing a solid-state platform for topological supercurrent qubit.

Fabrication of Gd1.5Ba2Cu3O7-y Bulk Superconductors from the Powder Synthesized by a Solid-State Reaction Method (고상반응법으로 합성한 분말로부터 Gd1.5Ba2Cu3O7-y 벌크 초전도체의 제조)

  • Kim, Yong Ju;Park, Seung Yeon;You, Byung Youn;Park, Soon-Dong;Kim, Chan-Joong
    • Korean Journal of Materials Research
    • /
    • v.23 no.6
    • /
    • pp.309-315
    • /
    • 2013
  • $GdBa_2Cu_3O_{7-y}$(Gd123) powders were synthesized by the solid-state reaction method using $Gd_2O_3$ (99.9% purity), $BaCO_3$ (99.75%) and CuO (99.9%) powders. The synthesized Gd123 powder and the Gd123 powder with $Gd_2O_3$ addition ($Gd_{1.5}Ba_2Cu_3O_{7-y}$(Gd1.5)) were used as raw powders for the fabrication of Gd123 bulk superconductors. The Gd123 and Gd1.5 bulk superconductors were fabricated by sintering or a top-seeded melt growth (TSMG) process. The superconducting transition temperature ($T_{c,onset}$) of the sintered Gd123 was 93 K and the transition width was as large as 20 K. The $T_{c,onset}$ of the TSMG processed Gd123 was 82 K and the transition width was also as large as 12 K. The critical current density ($J_c$) at 77 K and 0 T of the sintered Gd123 and TSMG processed Gd123 were as low as a few hundreds A/$cm^2$. The addition of 0.25 mole $Gd_2O_3$ and 1 wt.% $CeO_2$ to Gd123 enhanced the $T_c$, $J_c$ and magnetic flux density (H) of the TSMG processed Gd123 sample owing to the formation of the superconducting phase with high flux pinning capability. The $T_c$ of the TSMG processed Gd1.5 was 92 K and the transition width was 1 K. The $J_cs$ at 77 K (0 T and 2 T) were $3.2{\times}10^4\;A/cm^2$ and $2.5{\times}10^4\;A/cm^2$, respectively. The H at 77 K of the TSMG-processed Gd1.5 was 1.96 kG, which is 54% of the applied magnetic field (3.45 kG).