• 제목/요약/키워드: superconducting gap

검색결과 106건 처리시간 0.024초

Annealing condition dependence of the superconducting property and the pseudo-gap in the protect-annealed electron-doped cuprates

  • Jung, Woobeen;Song, Dongjoon;Cho, Su Hyun;Kim, Changyoung;Park, Seung Ryong
    • Progress in Superconductivity and Cryogenics
    • /
    • 제18권2호
    • /
    • pp.14-17
    • /
    • 2016
  • Annealing as-grown electron-doped cuprates under a low oxygen-partial-pressure condition is a necessary step to achieve superconductivity. It has been recently found that the so-called protect annealing results in much better superconducting properties in terms of the superconducting transition temperature and volume fraction. In this article, we report on angle-resolved photoemission spectroscopy studies of a protect-annealed electron-doped cuprate $Pr_{0.9}La_{1.0}Ce_{0.1}CuO_4$ on annealing condition dependent superconducting and pseudo-gap properties. Remarkably, we found that the one showing a better superconducting property possesses almost no pseudo-gap while others have strong pseudo-gap feature due to an anti-ferromagnetic order.

Superconductivity on Nb/Si(111) System : scanning tunneling microscopy and spectroscopy study

  • Jeon, Sang-Jun;Suh, Hwan-Soo;Kim, Sung-Min;Kuk, Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.390-390
    • /
    • 2010
  • Superconducting proximity effects of Nb/Si(111) were investigated with scanning tunneling microscopy(STM) and scanning tunneling spectroscopy(STS). A highly-doped($0.002\;{\omega}{\diamondsuit}cm$) Si wafer pieces were used as substrate and Nb source was thermally evaporated onto the atomically clean silicon substrate. The temperature of the silicon sample was held at $600^{\circ}C$ during the niobium deposition. And the sample was annealed at $600^{\circ}C$ for 30 minutes additionally. Volmer-Weber growth mode is preferred in Nb/Si(111) at the sample temperature of $600^{\circ}C$. With proper temperature and annealing time, we can obtain Nb islands of lateral size larger than Nb coherence length(~38nm). And outside of the islands, bare Si($7{\times}7$) reconstructed surface is exposed due to the Volmer-Weber Growth mode. STS measurement at 5.6K showed that Nb island have BCS-like superconducting gap of about 2mV around the Fermi level and the critical temperature is calculated to be as low as 6.1K, which is lower than that of bulk niobium, 9.5K. This reduced value of superconducting energy gap indicates suppression of superconductivity in nanostructures. Moreover, the superconducting state is extended out of the Nb island, over to bare Si surface, due to the superconducting proximity effect. Spatially-resolved scanning tunneling spectroscopy(SR-STS) data taken over the inside and outside of the niobium island shows gradually reduced superconducting gap.

  • PDF

Electrical Insulation Characteristics at Cryogenic Temperature for High Temperature Superconducting Cables

  • Okubo, Hitoshi;Hayakawa, Naoki
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제4C권1호
    • /
    • pp.15-20
    • /
    • 2004
  • This paper discusses electrical insulation characteristics at cryogenic temperature, especially focusing on partial discharge (PD) inception characteristics, for high temperature superconducting cables. In liquid nitrogen (L$N_2$) / polypropylene (PP) laminated paper composite insulation system, PD inception strength (PDIE) was evaluated in terms of volume effect and V-t characteristics. Different kinds of butt gap condition were applied in the experiments, using parallel plane and coaxial cylindrical cable samples. Experimental results revealed that the volume effect on PDIE could be evaluated by the statistical stressed liquid volume (SSLV) taking account the discharge probability not only in the butt gap but also in the other thin layers between PP laminated papers. Furthermore, the indices n of V-t characteristics at PD inception were estimated to be 80∼110, irrespective of the butt gap condition.

A Theory of Specific Heat Discontinuity of the Superconducting Crystals by Using the Linear Model for Critical Magnetic Field (임계 자기장 선형 모델을 이용한 초전도 결정의 비열 불연속성 이론)

  • Kim, Cheol-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • 제13권1호
    • /
    • pp.23-28
    • /
    • 2018
  • We derive a gap of specific heat discontinuity of superconducting crystals theoretically at the critical temperature $T_{CH}$ as an explicit function of applied magnetic field H by using the thermodynamic relations for Gibbs free energy and the linear model for the critical magnetic field $H_{CT}$. The derived a gap of specific heat discontinuity is compared with experimental results by J. Kacmarcik et al. for superconducting MgCNi3 crystal. Our specific heat gap function well explain the jump up phenomena of the superconducting crystals.

Conceptual design and fabrication test of the HTS magnets for a 500 W-class superconducting DC rotating machine under 77 K

  • Choi, J.;Kim, S.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • 제23권4호
    • /
    • pp.35-38
    • /
    • 2021
  • Conventional direct current (DC) rotating machines are usually used for crane and press machine using high torque in metal and steel industries, because of a constant output power along variable rotating speed. A general DC motor with permanent field magnets could not increase a magnetic flux density at a gap between armature coils and field magnets. However, a superconducting DC motor has field magnets composed with high temperature superconducting (HTS) coils and it could increase the magnetic flux density at the gap to over 10 times than those of a general DC motor by control the excitation current into HTS coils. The superconducting DC motor could be operated with extremely high torque and constant output power at a low rotational speed. In this paper, a 500 W superconducting DC rotating machine was conceptually designed with a LN2 (Liquid Nitrogen) cooling method and the operation characteristics results of HTS field magnets were presented. The two no-insulation HTS magnets for a 500 W superconducting DC rotating machine were fabricated. The excitation current for the HTS magnets could be controlled from 0 to 40 A. This test results will be available to design large-sized HTS magnets for a number of hundred kW class superconducting DC rotating machine under LN2 cooling system.

Tests of Inductive High-Tc Superconducting Fault Current Limiter with an Air-Gap (공극형 고온초전도한류기의 특성실험)

  • Joo, Min-Seok;Lee, Chan-Ju;Chu, Yong;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.181-183
    • /
    • 1996
  • A novel model of an inductive superconducting fault current limiter with an inductive superconducting fault current limiter with the air-gap core was fabricated and tested. If its impedance is not high enough to limit the fault current, then destructive damage occurs in the power system. We attained a magnetic saturation under higher current by an effective air gap introduced in the core. The fault current was successfully limited to two times as much as the nominal current at a 60 Hz source having an effective voltage of 70 V. The fault current flowing under such conditions can be limited to a desired value without any fault current peak within 1/4 cycles.

  • PDF

Magnetic Field and Electric Field Generated in an HTS Tape of a High Temperature Superconducting Magnet (고온 초전도 마그넷의 선재에서 발생되는 자장과 전계 해석)

  • Kim, Young-Min;Ku, Myung-Hwan;Cha, Guee-Soo;Jeon, Chang-Wan;Paik, Kyoung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제60권4호
    • /
    • pp.753-758
    • /
    • 2011
  • Magnetic field and Electric field of High Temperature Superconducting magnet are very important to analysis of superconducting magnet. The maximum perpendicular magnetic field was applied to the outermost pancake windings. The critical current of all the magnet windings is limited by the critical current of the outermost pancake windings. The E-J relation was used to determine the critical current, and an evolution s trategy was adopted for the optimization of gap length between each pancake windins. The results of calculations show that the critical current and the central magnetic field and uniformity increased by 82.6% and 31.6% and 50.8%, respectively, for a magnet consisting of ten pancake windings. This paper did an analysis the cause of increase the critical current and central magnetic field and uniformity in no gap and optimal gap model.

Design of an Antireflection Coating for High-efficiency Superconducting Nanowire Single-photon Detectors

  • Choi, Jiman;Choi, Gahyun;Lee, Sun Kyung;Park, Kibog;Song, Woon;Lee, Dong-Hoon;Chong, Yonuk
    • Current Optics and Photonics
    • /
    • 제5권4호
    • /
    • pp.375-383
    • /
    • 2021
  • We present a simulation method to design antireflection coating (ARCs) for fiber-coupled superconducting nanowire single-photon detectors. Using a finite-element method, the absorptance of the nanowire is calculated for a defined unit-cell structure consisting of a fiber, ARC layer, nanowire absorber, distributed Bragg reflector (DBR) mirror, and air gap. We develop a method to evaluate the uncertainty in absorptance due to the uncontrollable parameter of air-gap distance. The validity of the simulation method is tested by comparison to an experimental realization for a case of single-layer ARC, which results in good agreement. We show finally a double-layer ARC design optimized for a system detection efficiency of higher than 95%, with a reduced uncertainty due to the air-gap distance.

Design, Manufacture and Characteristic Experiment of a Superconducting power Supply with Superconducting Excitation Coil (초전도여자기를 이용한 초전도전원장치의 설계.제작 및 특성해석)

  • Chu, Yong;Kim, Ho-Min;Yoon, Yong-Soo;Ko, Tae-Kuk;Han, Tae-Su
    • Progress in Superconductivity and Cryogenics
    • /
    • 제2권1호
    • /
    • pp.14-18
    • /
    • 2000
  • This paper describes a series of experiments to investigate the operational characteristics of a superconducting power supply with superconducting excitation coil. In this experiment, the superconducting excitation coil is introduced to control the pole-flex in the air gap of the machine. The operating current of the superconducting powder supply is designed to have the value of 300 [A] for the rotational speed of 600 rpm. Sensors installed on the Nb sheet yield the information on the spatial and temporal behaviors of the magnetic field in spot and on the characteristics of the superconducting power supply.

  • PDF