• Title/Summary/Keyword: superconducting fault current limiter (SFCL)

Search Result 377, Processing Time 0.033 seconds

Electromagnetic characteristics of superconducting fault current limiters under the quenching (박막형 초전도 한류기의 퀜치상태의 전자기 특성)

  • Choi, H.S.;Chung, H.S.;Choi, C.J.;Lee, S.I.;Chung, S.B.;Oh, K.G.;Lim, S.H.;Han, B.S.;Chung, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.415-417
    • /
    • 2003
  • we analyzed the electromagnetic behavior of a superconducting fault current limiter (SFCL) under the quench state using FEM. The analysis model used in this work is 5.5 KVA meander-line type SFCLs. Meshes of 3,650 triangular elements were used in the analysis of this SFCL. Analysis results showed that the distribution of current density was concentrated to inner curved line in meander-line type-SFCL and the maximum current density was 14.61 $A/m^2$ and also the maximum Joule heat was 2,030 $W/m^2$ in this region. We think that the new and the modified structure must be considered for an uniform distribution of the electromagnetic field.

  • PDF

Study on the Electrical Insulation of Current Lead in the conduction-cooled 1-2kV Class High-Tc Superconducting DC Reactor (전도냉각되는 1-2kV급 고온초전도 직류리액터 전류도입부의 전기적 절연에 대한 연구)

  • 배덕권;안민철;이찬주;정종만;고태국;김상현
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.1
    • /
    • pp.30-34
    • /
    • 2002
  • In this Paper, Insulation of current lead in the conduction-cooled DC reactor for the 1.2kV class 3 high-Tc superconducting fault current limiter(SFCL) is studied. Thermal link which conducts heat energy but insulates electrical energy is selected as a insulating device for the current lead in the conduction-cooled Superconducting DC reactor. It consists of oxide free copper(OFC) sheets, Polyimide films, glass fiberglass reinforced Plastics (GFRP) plates and interfacing material such an indium or thermal compound. Through the test of dielectric strength in L$N_2$, polyimide film thickness of 125 ${\mu}{\textrm}{m}$ is selected as a insulating material. Electrical insulation and heat conduction are contrary to each other. Because of low heat conductivity of insulator and contact area between electrical insulator and heat conductor, thermal resistance of conduction-cooled system is increased. For the reducing of thermal resistance and the reliable contact between Polyimide and OFC, thermal compound or indium can be used As thermal compound layer is weak layer in electrical field, indium is finally selected for the reducing of thermal resistance. Thermal link is successfully passed the test. The testing voltage was AC 2.5kVrms and the testing time was 1 hour.

Influence of polymer coating on SFCL recovery under load

  • Gorbunova, D.A.;Kumarov, D.R.;Scherbakov, V.I.;Sim, Kideok;Hwang, Soon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.4
    • /
    • pp.44-47
    • /
    • 2019
  • This paper is a study of recovery under load process of superconducting fault current limiter (SFCL). SFCL consists of five parallel-connected high-temperature superconductor (HTS) tapes additionally stabilized by stainless tape. Previously, HTS was heated by current pulse to simulate a short circuit in a power grid. During the cooling period, the current amplitude decreased to 23% or less of HTS critical current value, which is the simulation of network re-switching. When HTS with a polymer coating is cooled, temperature gradient on thermal insulation layer occurs, that prevents a boiling crisis and improves the heat sink into liquid nitrogen. Two samples are coated with a 30 ㎛ and 50 ㎛ polylactide (PLA) layers, reference sample has no polymer coating on it. Samples with a polymer coating show 3-5 times faster cooling than the reference one.

Introduction of KEPCO's distribution class SFCL fabricated for verification test (실증시험용 배전급 초전도 한류기의 특성 평가 및 운전 시험)

  • Yim, Seong-Woo;Park, Chung-Ryul;Yu, Seung-Duck;Kim, Hye-Rim;Hyun, Ok-Bae;Park, Kwon-Bae;Sim, Jung-Wook;Lee, Kyoung-Ho;Oh, Ill-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.294_295
    • /
    • 2009
  • Superconducting fault current limiter (SFCL) is an power device of a novel concept. While SFCLs generate no ohmic loss during the operation carrying normal currents, they can limit fault currents very fast making large impedance by their quench characteristics. In 2006, KEPCO has developed a distribution class hybrid type SFCL by a collaborative research project with LS industrial systems. The SFCL has merits in practical and economical points of view. In the SFCL, the superconductor just plays a role of a fault detector and the current limiting is completed by the other current limiting element made of normal metals throu호 the line commutation. As a result, the required amounts of superconductors can be reduced considerably. Consequently, the hybrid SFCL can be fabricated with small size and cost, maintaining perfect current limiting performance. Currently, KEPCO is carrying out a research project at Gochang power test center for the purpose of the verification test of the 22.9 kV/ 630 A class SFCL for the practical application in real grid. Through the project, a long term operational test and fault current test will be done. In this paper, the back ground of development and installation of the SFCL will be explained and the operation plan of the SFCL for the verification test is also introduced.

  • PDF

Current limiting characteristics of the resistive SFCL using YBCO film (YBCO film을 이용한 저항형 초전도 한류기의 전류제한 특성)

  • Choi, Hyo-Sang;Kim, Hye-Rim;Hwang, Si-Dole;Hyun, Ok-Bae;Kim, Sang-Joon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.277-280
    • /
    • 1999
  • We fabricated a resistive superconducting fault current limiter of two stripe meander type based on a YBCO film, and performed current limitation experiments. In order to disperse the heat generated at hot spots in the YBCO film the film was coated with a gold shunt layer. At $0^{\circ}$ fault angle the minimum quench current was $9.6 A_{peak}$(meander line cross section: $5{\times}10^{-6}cm^2$) and the fast quench time was 0.63 msec. The resistance of the limiter continued to increase for three cycles due to heat generation in the gold layer and was stabilized afterwards. At $45^{\circ}$ and $90^{\circ}$ the fast quench time were 0.56 msec and 0.26 msec, respectively. The quench time is believed to be reduced because faults occurred when the current was increasing or was at the peak value. With the limiter we could effectively limit the fault current about 1/5 times right after the fault and about 1/8.5 times three cycles after.

  • PDF

Fault current limitation characteristics of the Bi-2212 bulk coil for distribution-class superconducting fault current limiters (배전급 초전도 한류기 개발을 위한 Bi-2212 초전도 한류소자의 사고전류 제한 특성)

  • Sim, Jung-Wook;Kim, Hye-Rim;Yim, Seong-Woo;Hyun, Ok-Bae;Lee, Hai-Gun;Park, Kwon-Bae;Kim, Ho-Min;Lee, Bang-Wook;Oh, Il-Sung;Breuer, Frank;Bock, Joachim
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.639-640
    • /
    • 2006
  • We investigated fault current limitation characteristics of the resistive superconducting fault current limiter(SFCL) which consisted of a Bi-2212 bulk coil and a shunt coil. The Bi-2212 bulk coil and the shunt coil were connected in parallel. The Bi-2212 bulk coil was placed inside the shunt coil to induce field-assisted quench. The fault test was conducted at an input voltage of 200 $V_{rms}$ and fault current of 12 $kA_{rms}$ and 25 $kA_{rms}$. The fault conditions were asymmetric and symmetric, and the fault period was 5 cycles. The test results show that the SFCL successfully limited the fault current of 12 $kA_{rms}$ and 25 $kA_{rms}$ to below $5.5{\sim}6.9kA_{peak}$ within $0.64{\sim}2.17$ msec after the fault occurred. Limitation was faster under symmetric fault test condition due to the larger change rate of current. We concluded that the speed of fault current limitation was determined by the speed of current rise rather than the amplitude of a short circuit current. These results show that the Bi-2212 bulk coil is suitable for distribution-class SFCLs.

  • PDF

Quench Characteristics of a Flux-lock type SFCL with Secondary Windings Connected in Serial and Parallel (2차 권선을 직.병렬연결한 자속구속형 전류제한기의 퀜치특성)

  • Park, Hyoung-Min;Cho, Yong-Sun;Choi, Hyo-Sang;Oh, Geum-Kon;Han, Tea-Hee;Lim, Sung-Hun;Hwang, Jong-Sun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.432-434
    • /
    • 2006
  • We investigated the quench characteristics of a flux-lock type superconducting fault current limiter (SFCL) according to the number of the superconducting elements at the subtractive polarity winding of a transformer. The flux-lock type SFCL consists of the transformer with a primary winding and two secondary windings connected in parallel, and the superconducting element was connected with secondary winding in series, respectively. The applied voltage at that tin was 200V. when two superconducting elements of the secondary winding was connected in parallel, the peak lie current increased up to 99A, while that flowing in a superconducting element in conventional flux-lock type SFCL showed 50A under the same conditions, the impedance of secondary winding under the same situation showed the opposite behavior. This enabled the parallel structure to be easy to increase the capacity of power system, in the meantime, The quench between two superconducting elements in the SFCL with two secondary windings connected in parallel was achieved simultaneously. While the quench-starting point was slightly different in the SFCL with two superconducting elements connected in series. We found that the parallel connection between the secondary windings increased the power capacity and let quench characteristics improve through their mutual linkage.

  • PDF

A Study on the Reliability Model of Superconducting Fault Current Limiter (초전도한류기의 신뢰도 모델에 관한 연구)

  • Bae, In-Su;Kim, Hyoung-Ju;Lee, Sang-Kyo;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.393_394
    • /
    • 2009
  • 초전도한류기(SFCL)는 고장전류에 대한 초고속 감지, 고장전류 제한이 가능하고, 정상계통에서는 무손실 운영이 가능한 신개념의 기기이다. 공급신뢰도 측면에서 SFCL은, 고장전류 저감으로 송전을 지속할 수 있는 장점이 있는 반면, 기존 계통에 직렬연결되므로 자체 고장으로 인해 공급신뢰도를 악화시킬 수도 있다. 특히, 고속스위치를 필요로 하는 하이브리드형 SFCL의 경우 계통연계 이전에 SFCL 자체의 신뢰성이나 주위 계통에 미치는 영향을 미리 검토해야 한다. 본 논문에서는 SFCL의 신뢰도 데이터를 계산하는 기법과 SFCL 인근 설비의 신뢰도 데이터를 갱신하는 방법에 대해 제시하였으며, 이는 SFCL가 연계된 배전계통의 수용가 공급신뢰도를 산출하기 위해 필요한 사전단계에 해당한다.

  • PDF

A Study on the Short Circuit Characteristic of Metallic Stabilizer Free Coated Conductor for FCL Application

  • Park, Dong-Keun;Kim, Min-Jae;Yang, Seong-Eun;Kim, Young-Jae;Chang, Ki-Sung;Na, Jin-Bae;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.4
    • /
    • pp.37-40
    • /
    • 2007
  • As power demands increase, development of the superconducting fault current limiter (SFCL) is being watched with interest. Many types of SFCLs using various superconducting materials have been developed. Especially, the FCL using coated conductor (CC) has been investigated actively at present. CCs have many advantages for the FCL application. YBCO materials used in CCs have a high n-value, and it is relatively easy to choose a matrix of the CC for high resistivity. If the CC has high resistivity, high voltage can be applied to the CC. Then total length of the CC used in SFCL, which has effects on total price and volume of the SFCL, can be reduced. Short circuit tests of two different types of CCs in the liquid nitrogen bath and its sub-cooled condition were performed and analyzed. An effect of high resistivity of the CC and cooling methods on fault current limiting characteristics could be verified in this paper.