• Title/Summary/Keyword: superconducting fault current limiter (SFCL)

Search Result 377, Processing Time 0.029 seconds

Simultaneous Quench Analysis of a Three-Phase 6.6 kV Resistive SFCL Based on YBCO Thin Films (YBCO 박막을 이용한 3상 6.6kV 항형 초전도 한류기의 동시Quench 분석)

  • Sim J;Kim H. R;Hyun O. B
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.46-51
    • /
    • 2004
  • We fabricated a resistive type superconducting fault current limiter (SFCL) of 3-phase $6.6 kV_{rms}$ / rating, based on YBCO thin films grown on sapphire substrates with a diameter off inch. Each element of the SFCL was designed to have the rated voltage of $600 V_{rms}$ $/35A_{rms}$. The elements produced a single phase with 8${\times}$6 components connected in series and parallel. In addition, a NiCr shunt resistor of 23 $\Omega$ was connected in parallel to each of them for simultaneous quenches between the elements. Prior to investigating the performance of the 3 phase SFCL, we examined the quench characteristics for 8 elements connected in series. For all elements, simultaneous quenches and equal voltage distribution within 10% deviation from the average were obtained. Based on these results, performance of the SFCL for single line-to-ground faults was investigated. The SFCL successfully limited the fault current of $10 kA_{ rms}$ below 816 $A_{peak}$ within 0.12 msec right after the fault occurred. During the quench process, average temperature of all components did not exceed 250 K, and the SFCL was totally safe during the whole operation.

  • PDF

Analysis of a TRV influence according to application position of a SFCL (초전도 한류기 투입 위치에 따른 TRV 영향 분석)

  • Bang, Seung-Hyun;Rhee, Sang-Bong;Kim, Chul-Hwan;Kim, Jae-Chul;Hyun, Ok-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.91-92
    • /
    • 2008
  • The rating of a circuit breaker depends not only on the interrupting current but also on a transient recovery voltage (TRV). To achieve a successful interruption, the circuit breaker must withstand the TRV. A superconducting fault current limiter (SFCL) is a device that limits the fault current fast and effectively without having high impedance during normal operation of the power system. Therefore, we studied the influence of the TRV according to the application of a resistive type SFCL in distribution system. This paper analyses the influence of the TRV for various application position of the resistive SFCL. The distribution system and the resistive SFCL were modeled by using EMTP-RV (Electromagnetic Transient Program - Restructured Version)

  • PDF

개선된 자속구속형 전류제한기의 동작 특성 분석

  • Kim, Yong-Jin;Du, Ho-Ik;Kim, Min-Ju;Lee, Dong-Hyeok;Han, Byeong-Seong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.215-215
    • /
    • 2009
  • Improved flux-lock type superconducting fault current limiter(SFCL) is composed of a series transformer and superconducting unit of the YBCO coated conductor. The primary and secondary coils in the transformer were wound in series each other through an iron core and the YBCO coated conductor was connected with secondary coil in parallel. In this paper, we investigated the current limiting characteristics through initial line current after fault initiation. through the analysis, it was shown that the smaller initial line current is superior to current limiting characteristics and a point of view of power burden of the YBCO coated conductor.

  • PDF

An Optimal Location of Superconducting Fault Current Limiter in Distribution Network with Distributed Generation Using an Index of Distribution Reliability Sensitivity (신뢰도 민감도 지수를 이용한 복합배전계통 내 초전도한류기의 최적 위치에 관한 연구)

  • Kim, Sung-Yul;Kim, Wook-Won;Bae, In-Su;Kim, Jin-O
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.6
    • /
    • pp.52-59
    • /
    • 2010
  • As electric power demand of customers is constantly increasing, more bulk power systems are needed to install in a network. By development of renewable energies and high-efficient facilities and deregulated electricity market, moreover, the amount of distributed resource is considerably increasing in distribution network consequently. Also, distribution network has become more and more complex as mesh network to improve the distribution system reliability and increase the flexibility and agility of network operation. These changes make fault current increase. Therefore, the fault current will exceed a circuit breaker capacity. In order to solve this problem, replacing breaker, changing operation mode of system and rectifying transformer parameters can be taken into account. The SFCL(Superconducting Fault Current Limiter) is one of the most promising power apparatus. This paper proposes a methodology for on optimal location of SFCL. This place is defined as considering the decrement of fault current by component type and the increment of reliability by customer type according to an location of SFCL in a distribution network connected with DG(Distributed Generation). With case studies on method of determining optimal location for SFCL applied to a radial network and a mesh network respectively, we proved that the proposed method is feasible.

A Study on the Application Impacts on Korean Power System by Introducing SFCL

  • Kim, Jong-Yul;Park, Heung-Kwan;Yoon, Jae-Young
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.1
    • /
    • pp.1-6
    • /
    • 2003
  • As power systems grow more complex and power demands increase, the fault current tends to gradually increase. In the near future, the fault current will exceed a circuit breaker rating for some substations, which is an especially important issue in the Seoul metropolitan area because of its highly meshed configuration. Currently, the Korean power system is regulated by changing the 154 ㎸ system configuration from a loop connection to a radial system, by splitting the bus where load balance can be achieved, and by upgrading the circuit breaker rating. A development project applying 154 ㎸ Superconducting Fault Current Limiter(SFCL) to 154 ㎸ transmission systems is proceeding with implementation slated for after 2010. In this paper, the resistive and inductive SFCLs are applied to re-duce the fault current in Korean power system and their technical and economic impacts are evaluated. The results show that the application of SFCL can eliminate the need to upgrade the circuit breaker rat-ing and the economic potential of SFCL is evaluated positively.

Electric Power Characteristics of a SFCL based on Turn-ratio of 3-Phase Transformer (3상 변압기의 권수비에 따른 초전도 한류기의 전력특성)

  • Jeong, In-Sung;Choi, Hyo-Sang;Jung, Byung-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.3
    • /
    • pp.414-417
    • /
    • 2014
  • At present, the demand for electric power increases, the electric power system is complicated. The size of the line-to-ground fault and the line-to-line fault occurred with complication of electric power system continue to increase, therefore several issues are raised. To address these issues effectively, the superconducting fault current limiter (SFCL) has been proposed, this study is ongoing. In this paper, we applied the SFCL in three-phase transformer and comparative analysis of the electric power burden to the SFCL. The superconductor is combined to the third winding of transformers in connection structure. In case of a third line-to-line fault, we did comparative analysis of the electric power burden to the SFCL based on the turn ratio of transformer third winding. In this case, we could confirm as the third turn ratio increased, electric power impressed to the superconducting element increased.

Design of Superconducting Elements for the 6.6kV 200A Superconducting Fault Current Limiter (6.6kV 200A 초전도 한류기용 초전도소자 설계)

  • Kang J.S.;LEE B.W.;Park K.B.;Oh I.S.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.518-520
    • /
    • 2004
  • In these days, there is a demand to develop fault current limiters(FCLs) to reduce excessive fault current and protect electrical equipments which are installed in the transmission and distribution power systems. We considered the resistive superconducting FCLs among the various kinds of FCLs. In this study, in order to develop the resistive superconducting FCL of 6.6kV 200A $3\phi$, we designed the new mask pattern for etching YBCO films by means of numerical analysis method, current limiting experiments and visualization of bubbles in films and investigated dielectric performance of the designed mask by using elecrtostatic numerical analysis method and breakdown experiments. We etched YBCO films by using the newly designed mask, connected the etched films in series and in parallel, and designed the 6.6kV resistive SFCL and then we observed the current limiting characteristics of the SFCL.

  • PDF

Characteristics of Sub-cooled Nitrogen Cryogenic System for Applied High-Tc Superconducting Devices (고온초전도 응용기기용 과냉질소 냉각시스템의 냉각특성)

  • 강형구;김형진;배덕권;안민철;윤용수;장호명;고태국
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.1
    • /
    • pp.38-42
    • /
    • 2004
  • The cryogenic system for 6.6 kV/200 A inductive superconducting fault current limiter (SFCL) was developed at Yonsei university in 2003. The sub-cooled nitrogen cryogenic system could be applied to not only SFCL but also many other applied high-Tc superconducting (HTS) devices like superconducting motor, superconducting generator and superconducting magnetic energy storage (SMES). Generally, the cooling capacity of GM-cryocooler depends on the load temperature. Therefore it is necessary to perform the cooling capacity test at no load condition to calculate the exact cooling power and heat load of cryogenic system. In this research, the cooling capacity test of GM-cryocooler was executed and the heat load of developed cryogenic system was calculated. The long run operation test results of sub-cooled nitrogen cryogenic system were successful in pressure and temperature condition. Moreover, the design and fabrication method of cryogenic system were introduced and the test results were described.

Investigation of the Feasibility of a Bus-bar coupled SFCL in the 154 kV KEPCO Grid (154 kV 초전도 한류기 모선연계 적용 연구)

  • 윤용범;현옥배;황시돌;김혜림
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.291-293
    • /
    • 2003
  • Applicability and economical feasibility of a Superconducting Fault Current Limiter (SFCL) have been investigated using the PSS/E simulation for a bus bar coupling at the real 154 ㎸ KEPCO power grid near Seoul. For the investigated substation, the maximum fault current exceeds the interruption rating of 4 circuit breakers (CB) out of 9 installed in the substation. The simulation showed that a SFCL installed in the bus tie position effectively limits the fault currents to save 4 CBs, which are to be replaced by ones of gloater interruption rating, otherwise. We suggest that the optimum resistance of the SFCL be 10 Ohm for the given grid.

  • PDF

Simultaneous Quench Characteristic of Resistive Superconducting Fault Current Limiting Modules by using BSCCO Tape

  • Yang Seong-Eun;Ahn Min-Cheol;Park Dong-Keun;Youn Il-Goo;Jang Dae-Hee;Ko Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.2
    • /
    • pp.43-45
    • /
    • 2006
  • Recently, the resistive Fault Current Limiter (SFCL) made with Coated Conductor (CC) has been researched with an advanced capability in CC. Current limiting elements must be connected in series in order to fabricate the resistive SFCL having large capacity. By the way, unless the applied voltage in the SFCL is distributed to the elements when the fault occurred, those elements will be critically damaged. Thus simultaneous quench of the elements is an important factor to design the resistive SFCL. In this paper, simultaneous quench characteristics of current limiting module by using BSCCO 2223 were researched before manufacturing the resistive SFCL by using CC. At the first fault stage, the elements generated the resistance at the same time. However, the unequal voltage is applied to the each element in process of time. The method is suggested to solve the problem of the unequal distribution. These experimental results will play an important part in developing for the resistive SFCL by using CC.