• 제목/요약/키워드: superconducting current lead

검색결과 59건 처리시간 0.022초

Recent Development of Bulk High-Tc Superconductors

  • 유상임
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 초전도 자성체
    • /
    • pp.88-95
    • /
    • 2002
  • Recent development in the field of RE-Ba-Cu-O (REBCO, RE: Y or rare earth elements) bulk high-Tc superconductors (HTS) is reviewed in the present paper. After the fatal weak link problem of sintered REBCO superconductors has been overcome by melt processing, this field has been greatly advanced during last ten years. The critical current density $J_c$ at 77 K has been enhanced by introducing effective flux pinning sites into the $REBa_2Cu_3O_y$ (RE123) superconducting matrix. Large melt-textured REBCO bulk crystals have been fabricated with the TSMG(top-seeded melt growth) technique. Mechanical properties of REBCO bulks have been improved by using the Ag additive or epoxy resin. Real bulk applications such as current lead, fault current limiter, flywheel energy storage system, magnetic field source, magnetic separation system, and etc., surely come true near future.

  • PDF

와전류에 의한 초전도 전원장치의 온도특성 해석에 관한 연구 (The Analysis of Temperature Characteristics of a Superconducting Power Supply Due to the Eddy Current)

  • 오윤상;배준한;송명곤;지창섭;김호민;고태국
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.175-177
    • /
    • 1996
  • This paper is studied on the numerical analysis of temperature distribution on the Nb-foil due to the eddy current under operating a superconducting power supply. The increase of rotating speed and magnetic flux above critical magnetic field lead to the temperature rising in the normal spot, the heat was distributed in the region of 30% distance from the center of the normal spot, but the most of the heat was transferred to LHe. Under operation of the sc power supply, the increase of rotation speed has the more influence on the temperature rising than that of magnetic flux. we can conclude that the totaling speed of normal spot is the main design consideration of the sc power supply, and get the optimal value of rotating speed.

  • PDF

Investigation on the electromechanical properties of RCE-DR GdBCO CC tapes under transversely applied load

  • Gorospe, Alking B.;Shin, Hyung-Seop
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권4호
    • /
    • pp.49-52
    • /
    • 2014
  • REBCO coated conductor (CC) tapes with superior mechanical and electromechanical properties are preferable in applications such as superconducting coils and magnets. The CC tapes should withstand factors that can affect their performance during fabrication and operation of its applications. In coil applications, CC tapes experience different mechanical constraints such as tensile or compressive stresses. Recently, the critical current ($I_c$) degradation of CC tapes used in coil applications due to delamination were already reported. Thermal cycling, coefficient of thermal expansion mismatch among constituent layers, screening current, etc. can induce excessive transverse tensile stresses that might lead to the degradation of $I_c$ in the CC tapes. Also, CC tapes might be subjected to very high magnetic fields that induce strong Lorentz force which possibly affects its performance in coil applications. Hence, investigation on the delamination mechanism of the CC tapes is very important in coiling, cooling, operation and design of prospect applications. In this study, the electromechanical properties of REBCO CC tapes fabricated by reactive co-evaporation by deposition and reaction (RCE-DR) under transversely applied loading were investigated. Delamination strength of the CC tape was determined using the anvil test. The $I_c$ degraded earlier under transverse tensile stress as compared to that under compressive one.

풍력 터빈용 750 kW 급 고온초전도 발전기 모듈의 코일 구조 설계 및 열 해석 (Structural Design and Thermal Analysis of a Module Coil for a 750 kW-Class High Temperature Superconducting Generator for Wind Turbine)

  • 투덴수런 오운자르갈;고병수;성해진;박민원
    • 한국산업정보학회논문지
    • /
    • 제24권2호
    • /
    • pp.33-40
    • /
    • 2019
  • 많은 풍력회사들은 큰 용량, 작은 크기 및 가벼운 무게의 풍력 발전기를 개발하기 위해 노력해 왔다. 고온초전도 풍력발전기는 기존의 풍력 발전기에 비해 부피와 중량을 줄일 수 있기 때문에 풍력 발전시스템에 더 적합하다. 그러나 고온초전도 발전기는 큰 진공 용기 및 계자 코일의 유지 보수가 어려운 문제를 가지고 있다. 이러한 문제는 고온초전도 계자 코일의 모듈화를 통해 해소될 수 있다. 그런데 고온초전도 모듈 코일에는 직류 전류를 전달하기 위한 전류 리드가 필요하며, 이는 큰 열전달 부하를 발생시킨다. 따라서 전류 리드는 전도 및 Joule 열 부하를 줄이기 위해 최적으로 설계되어야 한다. 본 논문에서는 750 kW급 고온초전도 발전기에 대한 모듈 코일의 구조 설계 및 열 해석을 다루었다. 모듈 코일의 전도 및 복사열 해석은 3D 유한요소법 프로그램을 사용하여 분석하였으며, 그 결과 총 열부하는 극저온 냉각장치의 냉각 용량보다 작았다. 본 논문에서 제시한 설계 및 해석결과는 풍력 발전시스템의 초전도 발전기 개발에 효과적으로 활용할 수 있을 것이다.

Establishment of an easy Ic measurement method of HTS superconducting tapes using clipped voltage taps

  • Shin, Hyung-Seop;Nisay, Arman;Dedicatoria, Marlon;Sim, KiDeok
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권2호
    • /
    • pp.29-32
    • /
    • 2014
  • The critical current, $I_c$ of HTS superconducting tapes can be measured by transport or contactless method. Practically, the transport method using the four-probe method is the most common. In this study, a simple test procedure by clipping the voltage lead taps have been introduced instead of soldering which reduces time and effort and thereby achieving a much faster measurement of $I_c$. When using a pair of iron clips, $I_c$ value decreased as compared with the measured one by standard method using soldered voltage taps and varies with the width of the clipped specimen part. However, when using a pure Cu clip, both by clipping and by soldering voltage taps give a comparable result and $I_c$ measured are equal and close to the samples specification. As a result, material to be used as voltage clip should be considered and should not influence the potential voltage between the leads during $I_c$ measurement. Furthermore, the simulation result of magnetic flux during $I_c$ measurement test showed that the decrease of $I_c$ observed in the experiment is due to the magnetic flux density, $B_y$ produced at the clipped part of the sample by the operating current with iron clips attached to the sample.

전도냉각형 저온용기에서 중간냉각의 최적화 (Optimization of intermediate cooling in conduction-cooled cryostat)

  • 장호명;박정수;김성래;김형진;진홍범;이봉근
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2001년도 학술대회 논문집
    • /
    • pp.155-158
    • /
    • 2001
  • An intermediate cooling is indispensible to reduce the refrigeration power at superconducting system that is cooled conductively by a cryocooler without liquid cryogens. The cooling load at the intermediate stage is caused by the mechanical supports, the radiation shield and the current lead. From the cooling load calculation, a thermodynamic analysis that take into account the temperature-dependent properties of the materials and the actual performance of the cryocooler is developed. For any given physical dimensions of the various components, it is shown that there exist a unique optimum for the intermediate temperature to minimize the overall refrigeration power. The results of this study can be usefully applied to the selection of the cryocooler as well as the design of the conduction-cooled cryostat.

  • PDF

외부 교류자장이 Bi-2223테이프의 동저항 및 손실특성에 미치는 영향 (Effect of an External AC Magnetic field on Dynamic Resistance and Loss Characteristic in a Bi-2223 Tape)

  • 류경우;최병주
    • 한국전기전자재료학회논문지
    • /
    • 제18권5호
    • /
    • pp.473-477
    • /
    • 2005
  • A Bi-2223 tape has been developed for power applications such as a fault current limiter, a power cable and a superconducting magnetic energy storage system. In such applications, the Bi-2223 tape carries time varying transport current and in addition experiences time varying external magnetic field. It is well known that the external magnetic field not only causes magnetization loss in the Bi-2223 tape, but also drastically increases transport loss due to a so-called 'dynamic resistance' We developed an evaluation setup, which can measure transport loss in external at magnetic fields. Using this equipment, we measured the dynamic resistances for various amplitudes and frequencies of an external at magnetic field perpendicular to the face in the tape. Simultaneously we investigated the effect of an external ac field on transport loss with different experimental conditions. This paper describes test results ana discussions on correlation between the dynamic resistance and the transport loss for the Bi-2223 tape.

다채널 스퀴드 미분계에서 센서 잡음이 위치추정 오차에 미치는 영향 (Influence of Sensor Noise on the Localization Error in Multichannel SQUID Gradiometer System)

  • 김기웅;이용호;권혁찬;김진목;정용석;강찬석;김인선;박용기;이순걸
    • Progress in Superconductivity
    • /
    • 제5권2호
    • /
    • pp.98-104
    • /
    • 2004
  • We analyzed a noise-sensitivity profile of a specific SQUID sensor system for the localization of brain activity. The location of a neuromagnetic current source is estimated from the recording of spatially distributed SQUID sensors. According to the specific arrangement of the sensors, each site in the source space has different sensitivity, that is, the difference in the lead field vectors. Conversely, channel noises on each sensor will give a different amount of the estimation error to each of the source sites. e.g., a distant source site from the sensor system has a small lead-field vector in magnitude and low sensitivity. However, when we solve the inverse problem from the recorded sensor data, we use the inverse of the lead-field vector that is rather large, which results in an overestimated noise power on the site. Especially, the spatial sensitivity profile of a gradiometer system measuring tangential fields is much more complex than a radial magnetometer system. This is one of the causes to make the solutions of inverse problems unstable on intervening of the sensor noise. In this study, in order to improve the localization accuracy, we calculated the noise-sensitivity profile of our 40-channel planar SQUID gradiometer system, and applied it as a normalization weight factor to the source localization using synthetic aperture magnetometry.

  • PDF

KSTAR 전류전송계통 진공배기계 구축 및 시운전 (Construction and Tests of the Vacuum Pumping System for KSTAR Current Feeder System)

  • 우인식;송낙형;이영주;곽상우;방은남;이근수;김정수;장용복;박현택;홍재식;박영민;김양수;최창호
    • 한국진공학회지
    • /
    • 제16권6호
    • /
    • pp.483-488
    • /
    • 2007
  • KSTAR (Korea Superconducting Tokamak Advanced Research) 전류전송계 (Current Feeder System)는 4.5 K의 저온에서 운전되는 초전도자석과 300 K의 실온에서 운전되는 전원장치 (Magnet Power Supply)를 전기적으로 연결하는 장치이다. 전류전송계는 최대 35 kA의 DC 전류가 인가되는 TF 자석용 및 350초간 20$\sim$26 ㎄의펄스 전류가 인가되는 PF 자석용으로 분리되어 있으며 리드박스 내부는 전류인입선, 초전도버스라인, 열차폐체 및 냉각라인 등이 설치되어 있다. 리드박스와 초전도버스라인 진공덕트는 KSTAR 주장치와는 별도로 진공배기 시스템이 구축되어있으며, 전체적으로 아령 형상을 하고 있는 진공공간을 효율적으로 진공배기하기 위하여 버스라인 덕트와 주장치 저온용기 사이에 진공 분리막 (Vacuum Separator)이 설치되어 있다. 진공배기를 위한 초벌배기계는 로터리펌프 및 부스터펌프 (Mechanical Booster Pump)로 구축되었으며 고진공 배기계는 4대의 크라이오펌프 (Cryo-pump)로 구축되었다. 진공장치 운전을 위해 PLC 기반의 로컬 제어시스템을 구축하였고 장치 안전을 위한 자체 인터록과 중앙인터록 시스템 및 중앙제어연계시스템이 함께 구축되어 있다. 전류전송계 설치완료 후 진공배기 시운전을 통해 배기시스템의 자가진단 및 리드박스 내부에 설치되어 있는 헬륨배관의 진공누설검사를 완료하였으며, 액체질소를 사용하여 전류인입선 냉각시험을 완료하였다.