• Title/Summary/Keyword: super-typhoon

Search Result 25, Processing Time 0.025 seconds

Wavelet-transform-based damping identification of a super-tall building under strong wind loads

  • Xu, An;Wu, Jiurong;Zhao, Ruohong
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.353-370
    • /
    • 2014
  • A new method is proposed in this study for estimating the damping ratio of a super tall building under strong wind loads with short-time measured acceleration signals. This method incorporates two main steps. Firstly, the power spectral density of wind-induced acceleration response is obtained by the wavelet transform, then the dynamic characteristics including the natural frequency and damping ratio for the first vibration mode are estimated by a nonlinear regression analysis on the power spectral density. A numerical simulation illustrated that the damping ratios identified by the wavelet spectrum are superior in precision and stability to those values obtained from Welch's periodogram spectrum. To verify the efficiency of the proposed method, wind-induced acceleration responses of the Guangzhou West Tower (GZWT) measured in the field during Typhoon Usagi, which affected this building on September 22, 2013, were used. The damping ratios identified varied from 0.38% to 0.61% in direction 1 and from 0.22% to 0.59% in direction 2. This information is expected to be of considerable interest and practical use for engineers and researchers involved in the wind-resistant design of super-tall buildings.

Wind characteristics observed in the vicinity of tropical cyclones: An investigation of the gradient balance and super-gradient flow

  • Tse, K.T.;Li, S.W.;Lin, C.Q.;Chan, P.W.
    • Wind and Structures
    • /
    • v.19 no.3
    • /
    • pp.249-270
    • /
    • 2014
  • Through comparing the mean wind profiles observed overland during the passages of four typhoons, and the gradient wind speeds calculated based on the sea level pressure data provided by a numerical model, the present paper discusses, (a) whether the gradient balance is a valid assumption to estimate the wind speed in the height range of 1250 m ~ 1750 m, which is defined as the upper-level mean wind speed, in a tropical cyclone over land, and (b) if the super-gradient feature is systematically observed below the height of 1500 m in the tropical cyclone wind field over land. It has been found that, (i) the gradient balance is a valid assumption to estimate the mean upper-level wind speed in tropical cyclones in the radial range from the radius to the maximum wind (RMW) to three times the RMW, (ii) the super-gradient flow dominates the wind field in the tropical cyclone boundary layer inside the RMW and is frequently observed in the radial range from the RMW to twice the RMW, (iii) the gradient wind speed calculated based on the post-landfall sea level pressure data underestimates the overall wind strength at an island site inside the RMW, and (iv) the unsynchronized decay of the pressure and wind fields in the tropical cyclone might be the reason for the underestimation.

A Study on Changes in the Characteristics of Typhoons around the Korean Peninsula for Coastal Disaster Prevention (해안 방재를 위한 한반도의 태풍 특성 변화 연구)

  • Young Hyun, Park
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.325-334
    • /
    • 2022
  • It has been more than 30 years since the term climate change began to become popular, but recently, rapid accelerated phenomena are appearing in the form of extreme weather all over the world. It is showing a distinctly different phenomenon from previous years, with heavy rain falling in the Death Valley desert in the U.S., and temperatures rising more than 40 degrees in Europe. In the Korean Peninsula, super typhoons with very strong wind speeds have become a major disaster risk for many years, and the supply of more energy due to the rise in sea temperature increases the possibility of super typhoons, requiring a proactive response. Unlike the method using numerical analysis, this study analyzed past typhoon data to study changes in typhoon characteristics for coastal disaster prevention. Existing studies have targeted all typhoons that have occurred, but in this study, a specific area was set up in the southern ocean of the Korean Peninsula and then a study was conducted. The subjects of the study were typhoons that occurred over the past 40 years from 1980 to the present, and it was confirmed that the maximum wind speed of typhoons affecting the Korean Peninsula increased slightly. The wind speed of typhoons in the specific area is about 80% of the maximum wind speed in their lifetime, and a correlation with ENSO could not be confirmed.

A Study on Inundation Simulation in Coastal Urban Areas Using a Two-Dimensional Numerical Model (2차원 수치모형을 이용한 해안도시지역 내 범람모의에 관한 연구)

  • Jeong, Woo-Chang;Kim, Kyung-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.8
    • /
    • pp.601-617
    • /
    • 2011
  • In this study, the simulation and analysis for the inundation in a coastal urban area according to the storm surge height are carried out using a 2-D numerical model. The target area considered in this study is a part of the new town of Changwon City, Gyungsangnam-do and this area was extremely damaged due to the storm surge generated during the period of the typhoon "Maemi" in 2003. For the purpose of the verification of the numerical model applied in this study, the simulated results are compared and analyzed with the temporal storm surge heights observed at the tide station in Masan bay and inundation traces in an urban area. Moreover, in order to investigate the influence of super typhoons possible in the future, the results simulated with the storm surge heights increased 1.25 and 1.5 times compared with those observed during the period of typhoon "Maemi" are compared and analyzed.

A Case Study on the Preliminary Study for Disaster Prevention of Storm Surge: Arrangement of Structures (폭풍해일 방재를 위한 사례적용을 통한 선행연구: 구조물 배치)

  • Young Hyun, Park;Woo-Sun, Park
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.335-345
    • /
    • 2022
  • Climate change is accelerating worldwide due to the recent rise in global temperature, and the intensity of typhoons is increasing due to the rise in seawater temperature around the Korean Peninsula. An increase in typhoon intensity is expected to increase not only wind damage, but also coastal damage caused by storm surge. Accordingly, in this study, a study of the method of reducing storm surges was conducted for the purpose of disaster prevention in order to respond to the increasing damage from storm surges. Storm surges caused by typhoons can be expected to be affected by structures located on the track of typhoon, and the effects of storm surges were studied by the eastern coast and the barrier island along the coast of the Gulf of Mexico in the United States. This study focused on this aspect and conducted related research, considering that storm surges in the southern coastal area of the Korean Peninsula could be directly or indirectly affected by Jeju Island, which is located on the track of typhoon. In order to analyze the impact of Jeju Island on storm surges, simulations were performed in various situations using a numerical analysis model. The results of using Jeju Island are thought to be able to be used to study new disaster prevention structures that respond to super typhoons.

The construction of Flood Disaster Management System by Using Mobile GIS (Mobile GIS를 이용한 홍수관리시스템 구축)

  • Jang, Kwang-Jin;Kim, Sung-Bum;Seo, Young-Min;Jee, Hong-Kee
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.616-619
    • /
    • 2007
  • Recently, flood damage has been increased annually by severe rain storm and Typhoon. In this case, it needs to the effective flood management using not only hydrologic data but also numerical map, DEM(Digital Elevation Model), satellite image and so on. At this point in time, therefore, applying mobile GIS technology is expected to increase efficiency about the management of hydraulic structures and can promote LBS(Location Based Service) service for residents. In this study, the flood management technology using mobile GIS is suggested by standing on the basis of a super-highway information network.

  • PDF

Wind-induced responses and dynamic characteristics of a super-tall building under a typhoon event

  • Hua, X.G.;Xu, K.;Wang, Y.W.;Wen, Q.;Chen, Z.Q.
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.81-96
    • /
    • 2020
  • Wind measurements were made on the Canton Tower at a height of 461 m above ground during the Typhoon Vincente, the wind-induced accelerations and displacements of the tower were recorded as well. Comparisons of measured wind parameters at upper level of atmospheric boundary layer with those adopted in wind tunnel testing were presented. The measured turbulence intensity can be smaller than the design value, indicating that the wind tunnel testing may underestimate the crosswind structural responses for certain lock-in velocity range of vortex shedding. Analyses of peak factors and power spectral density for acceleration response shows that the crosswind responses are a combination of gust-induced buffeting and vortex-induced vibrations in the certain range of wind directions. The identified modal frequencies and mode shapes from acceleration data are found to be in good agreement with existing experimental results and the prediction from the finite element model. The damping ratios increase with amplitude of vibration or equivalently wind velocity which may be attributed to aerodynamic damping. In addition, the natural frequencies determined from the measured displacement are very close to those determined from the acceleration data for the first two modes. Finally, the relation between displacement responses and wind speed/direction was investigated.

Economical Feasibility of Cultivation under Structure Due to the Introduction of New and Renewable Energy -Comparative Analysis of Wood-Pellet, Geothermal Heat and Diesel- (신재생에너지 도입에 따른 시설재배의 경제성 분석 -목재팰릿, 지열과 경유의 비교분석을 중심으로-)

  • Kim, Hyung Woo;Yoon, Sung-Yee
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.2
    • /
    • pp.255-268
    • /
    • 2014
  • We are now currently facing serious climate changes such as super typhoon, flood, intense heat, severe cold, super hurricane, drought, desertification, destruction of ecosystem, marine pollution, reduction of food production, destruction of tropical forests, exhaustion of water resources, climate refugees, etc. All of the above mainly derive from greenhouse gas exhaustion. Such harmful consequence might directly affect mankind's sustainable development. If we keep using resources that emits greenhouse gases, the global temperature will rise about $3.2^{\circ}C$ by year 2050. In case of $3^{\circ}C$ rise in temperature, it will result in abnormal climate which will bring about severe property damage. Moreover, 20~50% of the ecosystem will become extinct. As Korea's economy increasingly expands, so do our energy consumption rises. And because of the consequences that can be driven by increasing rate of resource use, not just Korea itself, but also the whole world should seriously concern about greenhouse gases. Although agricultural division only takes up about 3.2% of total greenhouse gas emission, the ministry of Agriculture, Food and Rural Affairs are taking voluntary actions to gradually reduce $CO_2$ and so does each and every related organizations. In order to reduce $CO_2$, introduction of new and renewable energy in farm house warming is crucial. In other words, implementing wood-pellet boiler and geothermal heat boiler can largly reduce $CO_2$ emission compared to diesel boiler. More importantly, not only wood-pellet and geothermal heat is pollution-free but they also have economic advantages some-what. In this thesis, the economic advantage and sustainablity will be introduced and proved through comparing practical analysis of surveyed farm house under structure employing wood-pellet boiler and geothermal heat boiler with Agriculture-Economic Statistic of 2012 who uses diesel boiler.

Large eddy simulation of wind effects on a super-tall building

  • Huang, Shenghong;Li, Q.S.
    • Wind and Structures
    • /
    • v.13 no.6
    • /
    • pp.557-580
    • /
    • 2010
  • A new inflow turbulence generation method and a combined dynamic SGS model recently developed by the authors were applied to evaluate the wind effects on 508 m high Taipei 101 Tower. Unlike the majority of the past studies on large eddy simulation (LES) of wind effects on tall buildings, the present numerical simulations were conducted for the full-scale tall building with Reynolds number greater than $10^8$. The inflow turbulent flow field was generated based on the new method called discretizing and synthesizing of random flow generation technique (DSRFG) with a prominent feature that the generated wind velocity fluctuations satisfy any target spectrum and target profiles of turbulence intensity and turbulence integral length scale. The new dynamic SGS model takes both advantages of one-equation SGS model and a dynamic production term without test-filtering operation, which is particular suitable to relative coarse grid situations and high Reynolds number flows. The results of comparative investigations with and without generation of inflow turbulence show that: (1) proper simulation of an inflow turbulent field is essential in accurate evaluation of dynamic wind loads on a tall building and the prescribed inflow turbulence characteristics can be adequately imposed on the inflow boundary by the DSRFG method; (2) the DSRFG can generate a large number of random vortex-like patterns in oncoming flow, leading to good agreements of both mean and dynamic forces with wind tunnel test results; (3) The dynamic mechanism of the adopted SGS model behaves adequately in the present LES and its integration with the DSRFG technique can provide satisfactory predictions of the wind effects on the super-tall building.

The Experimental Study for Variance of Depositation Due to Sediment Volume Concentration of Debris Flow (토석류의 토사체적농도에 따른 퇴적 특성 변화에 관한 실험 연구)

  • Choi, Youngdo;Kim, Sungduk;Lee, Hojin
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.15-21
    • /
    • 2022
  • The purpose of this study is to investigate the sedimentation area and runout distance in the downstream when debris flow occurred on a mountain slope through an experimental performance. Super typhoons and torrential rains caused by climate change cause large-scale debris flow disasters in the downstream areas of mountainous areas, mainly where sediments are deposited and flowed downstream. To analyze the characteristics of the sediment deposited downstream, the disposition area and runout distance were investigated through experiments in the case of a straight channel and channel with berm, respectively. As experimental conditions, changes in sediment volume concentration and channel slope, and channel with or without berm, reduction rates in sedimentation area and runout distance were investigated. In the straight channel, the steeper the channel slope and the lower the sedimentation concentration, the sedimentation area and runout distnace were increased. In a channel with berm, the runout distance and sediment area increased as the slope became steeper and the sediment area decreased.