• Title/Summary/Keyword: super 해상도

Search Result 240, Processing Time 0.021 seconds

Deep Learning-based SISR (Single Image Super Resolution) Method using RDB (Residual Dense Block) and Wavelet Prediction Network (RDB 및 웨이블릿 예측 네트워크 기반 단일 영상을 위한 심층 학습기반 초해상도 기법)

  • NGUYEN, HUU DUNG;Kim, Eung-Tae
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.703-712
    • /
    • 2019
  • Single image Super-Resolution (SISR) aims to generate a visually pleasing high-resolution image from its degraded low-resolution measurement. In recent years, deep learning - based super - resolution methods have been actively researched and have shown more reliable and high performance. A typical method is WaveletSRNet, which restores high-resolution images through wavelet coefficient learning based on feature maps of images. However, there are two disadvantages in WaveletSRNet. One is a big processing time due to the complexity of the algorithm. The other is not to utilize feature maps efficiently when extracting input image's features. To improve this problems, we propose an efficient single image super resolution method, named RDB-WaveletSRNet. The proposed method uses the residual dense block to effectively extract low-resolution feature maps to improve single image super-resolution performance. We also adjust appropriated growth rates to solve complex computational problems. In addition, wavelet packet decomposition is used to obtain the wavelet coefficients according to the possibility of large scale ratio. In the experimental result on various images, we have proven that the proposed method has faster processing time and better image quality than the conventional methods. Experimental results have shown that the proposed method has better image quality by increasing 0.1813dB of PSNR and 1.17 times faster than the conventional method.

A Study on Super Resolution Image Reconstruction for Acquired Images from Naval Combat System using Generative Adversarial Networks (생성적 적대 신경망을 이용한 함정전투체계 획득 영상의 초고해상도 영상 복원 연구)

  • Kim, Dongyoung
    • Journal of Digital Contents Society
    • /
    • v.19 no.6
    • /
    • pp.1197-1205
    • /
    • 2018
  • In this paper, we perform Single Image Super Resolution(SISR) for acquired images of EOTS or IRST from naval combat system. In order to conduct super resolution, we use Generative Adversarial Networks(GANs), which consists of a generative model to create a super-resolution image from the given low-resolution image and a discriminative model to determine whether the generated super-resolution image is qualified as a high-resolution image by adjusting various learning parameters. The learning parameters consist of a crop size of input image, the depth of sub-pixel layer, and the types of training images. Regarding evaluation method, we apply not only general image quality metrics, but feature descriptor methods. As a result, a larger crop size, a deeper sub-pixel layer, and high-resolution training images yield good performance.

Super-resolution image enhancement by Papoulis-Gerchbergmethod improvement (Papoulis-Gerchberg 방법의 개선에 의한 초해상도 영상 화질 향상)

  • Jang, Hyo-Sik;Kim, Duk-Gyoo;Jung, Yoon-Soo;Lee, Tae-Gyoun;Won, Chul-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.118-123
    • /
    • 2010
  • This paper proposes super-resolution reconstruction algorithm for image enhancement. Super-resolution reconstruction algorithms reconstruct a high-resolution image from multi-frame low-resolution images of a scene. Conventional super- resolution reconstruction algorithms are iterative back-projection(IBP), robust super-resolution(RS)method and standard Papoulis-Gerchberg(PG)method. However, traditional methods have some problems such as rotation and ringing. So, this paper proposes modified algorithm to improve the problem. Experimental results show that this proposed algorithm solve the problem. As a result, the proposed method showed an increase in the PSNR for traditional super-resolution reconstruction algorithms.

Structure, Method, and Improved Performance Evaluation Function of SRCNN and VDSR (SRCNN과 VDSR의 구조와 방법 및 개선된 성능평가 함수)

  • Lee, Kwang-Chan;Wang, Guangxing;Shin, Seong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.543-548
    • /
    • 2021
  • The higher the resolution of the image, the higher the satisfaction of the viewers of the image, and the super-resolution imaging has a considerable increase in research value among the fields of computer vision and image processing. In this study, the main features of low-resolution image LR are extracted mainly using deep learning super-resolution models. It learns and reconstructs the extracted features, and focuses on reconstruction-based algorithms that generate high-resolution image HR. In this paper, we investigate SRCNN and VDSR in a super-resolution algorithm model based on reconstruction. The structure and algorithm process of the SRCNN and VDSR model are briefly introduced, and the multi-channel and special form are also examined in the improved performance evaluation function, and understand the performance of each algorithm through experiments. In the experiment, an experiment was performed to compare the results of the SRCNN and VDSR models with the peak signal-to-noise ratio and image structure similarity, so that the results can be easily judged.

Super-Resolution Algorithm Using Motion Estimation for Moving Vehicles (움직임 추정 기법을 이용한 움직이는 차량의 초고해상도 복원 알고리즘)

  • Kim, Seung-Hoon;Cho, Sang-Bock
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.4
    • /
    • pp.23-31
    • /
    • 2012
  • This paper proposes a motion estimation-based super resolution algorithm to restore input low-resolution images of large movement into a super-resolution image. It is difficult to find the sub-pixel motion estimation in images of large movement compared to typical experimental images. Also, it has disadvantage which have high computational complexity to find reference images and candidate images using general motion estimation method. In order to solve these problems for the traditional two-dimensional motion estimation using the proposed registration threshold that satisfy the conditions based on the reference image is determined. Candidate image with minimum weight among the best candidates for super resolution images, the restoration process to proceed with to find a new image registration algorithm is proposed. According to experimental results, the average PSNR of the proposed algorithm is 31.89dB and this is better than PSNR of traditional super-resolution algorithm and it also shows improvement of computational complexity.

Super-Resolution Using NLSA Mechanism (비지역 희소 어텐션 메커니즘을 활용한 초해상화)

  • Kim, Sowon;Park, Hanhoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.1
    • /
    • pp.8-14
    • /
    • 2022
  • With the development of deep learning, super-resolution (SR) methods have tried to use deep learning mechanism, instead of using simple interpolation. SR methods using deep learning is generally based on convolutional neural networks (CNN), but recently, SR researches using attention mechanism have been actively conducted. In this paper, we propose an approach of improving SR performance using one of the attention mechanisms, non-local sparse attention (NLSA). Through experiments, we confirmed that the performance of the existing SR models, IMDN, CARN, and OISR-LF-s can be improved by using NLSA.

Image Resolution Enhancement by Improved S&A Method using POCS (POCS 이론을 이용한 개선된 S&A 방법에 의한 영상의 화질 향상)

  • Yoon, Soo-Ah;Lee, Tae-Gyoun;Lee, Sang-Heon;Son, Myoung-Kyu;Kim, Duk-Gyoo;Won, Chul-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.11
    • /
    • pp.1392-1400
    • /
    • 2011
  • In most digital imaging applications, high-resolution images or videos are usually desired for later image processing and analysis. The image signal obtained from general imaging system occurs image degradation during the process of image acquirement caused by the optics, physical constraints and the atmosphere effects. Super-resolution reconstruction, one of the solution to address this problem, is image reconstruction technique that produces a high-resolution image from several low-resolution frames in video sequences. In this paper, we propose an improved super-resolution method using Projection onto Convex Sets (POCS) method based on Shift & Add (S&A). The image using conventional algorithms is sensitive to noise. To solve this problem, we propose a fusion algorithm of S&A and POCS. Also we solve the problem using BLPF (Butterworth Low-pass Filter) in frequency domain as optical blur. Our method is robust to noise and has sharpness enhancement ability. Experimental results show that the proposed super-resolution method has better resolution enhancement performance than other super-resolution methods.

A Study on Various Attention for Improving Performance in Single Image Super Resolution (초고해상도 복원에서 성능 향상을 위한 다양한 Attention 연구)

  • Mun, Hwanbok;Yoon, Sang Min
    • Journal of Broadcast Engineering
    • /
    • v.25 no.6
    • /
    • pp.898-910
    • /
    • 2020
  • Single image-based super-resolution has been studied for a long time in computer vision because of various applications. Various deep learning-based super-resolution algorithms are introduced recently to improve the performance by reducing side effects like blurring and staircase effects. Most deep learning-based approaches have focused on how to implement the network architecture, loss function, and training strategy to improve performance. Meanwhile, Several approaches using Attention Module, which emphasizes the extracted features, are introduced to enhance the performance of the network without any additional layer. Attention module emphasizes or scales the feature map for the purpose of the network from various perspectives. In this paper, we propose the various channel attention and spatial attention in single image-based super-resolution and analyze the results and performance according to the architecture of the attention module. Also, we explore that designing multi-attention module to emphasize features efficiently from various perspectives.

Parameter Analysis for Super-Resolution Network Model Optimization of LiDAR Intensity Image (LiDAR 반사 강도 영상의 초해상화 신경망 모델 최적화를 위한 파라미터 분석)

  • Seungbo Shim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.137-147
    • /
    • 2023
  • LiDAR is used in autonomous driving and various industrial fields to measure the size and distance of an object. In addition, the sensor also provides intensity images based on the amount of reflected light. This has a positive effect on sensor data processing by providing information on the shape of the object. LiDAR guarantees higher performance as the resolution increases but at an increased cost. These conditions also apply to LiDAR intensity images. Expensive equipment is essential to acquire high-resolution LiDAR intensity images. This study developed artificial intelligence to improve low-resolution LiDAR intensity images into high-resolution ones. Therefore, this study performed parameter analysis for the optimal super-resolution neural network model. The super-resolution algorithm was trained and verified using 2,500 LiDAR intensity images. As a result, the resolution of the intensity images were improved. These results can be applied to the autonomous driving field and help improve driving environment recognition and obstacle detection performance

Efficient Super-Resolution of 2D Smoke Data with Optimized Quadtree (최적화된 쿼드트리를 이용한 2차원 연기 데이터의 효율적인 슈퍼 해상도 기법)

  • Choe, YooYeon;Kim, Donghui;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.261-264
    • /
    • 2021
  • 본 논문에서는 SR(Super-Resolution)을 계산하는데 필요한 데이터를 효율적으로 분류하고 분할하여 빠르게 SR연산을 가능하게 하는 쿼드트리 기반 최적화 기법을 제안한다. 제안하는 방법은 입력 데이터로 사용하는 연기 데이터를 다운스케일링(Downscaling)하여 쿼드트리 연산 소요 시간을 감소시키며, 이때 연기의 밀도를 이진화함으로써, 다운스케일링 과정에서 밀도가 손실되는 문제를 피한다. 학습에 사용된 데이터는 COCO 2017 Dataset이며, 인공신경망은 VGG19 기반 네트워크를 사용한다. 컨볼루션 계층을 거칠 때 데이터의 손실을 막기 위해 잔차(Residual)방식과 유사하게 이전 계층의 출력 값을 더해주며 학습한다. 결과적으로 제안하는 방법은 이전 결과 기법에 비해 약15~18배 정도의 속도향상을 얻었다.

  • PDF