• Title/Summary/Keyword: sum of temperature

Search Result 225, Processing Time 0.021 seconds

Assessment of water supply reliability under climate stress scenarios (기후 스트레스 시나리오에 따른 국내 다목적댐 이수안전도 평가)

  • Jo, Jihyeon;Woo, Dong Kook
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.6
    • /
    • pp.409-419
    • /
    • 2024
  • Climate change is already impacting sustainable water resource management. The influence of climate change on water supply from reservoirs has been generally assessed using climate change scenarios generated based on global climate models. However, inherent uncertainties exist due to the limitations of estimating climate change by assuming IPCC carbon emission scenarios. The decision scaling approach was applied to mitigate these issues in this study focusing on four reservoir watersheds: Chungju, Yongdam, Hapcheon, and Seomjingang reservoirs. The reservoir water supply reliablity was analyzed by combining the rainfall-runoff model (IHACRES) and the reservoir operation model based on HEC-ResSim. Water supply reliability analysis was aimed at ensuring the stable operation of dams, and its results ccould be utilized to develop either structural or non-structural water supply plans. Therefore, in this study, we aimed to assess potential risks that might arise during the operation of reserviors under various climate conditions. Using observed precipitation and temperature from 1995 to 2014, 49 climate stress scenarios were developed (7 precipitation scenarios based on quantiles and 7 temperature scenarios ranging from 0℃ to 6℃ at 1℃ intervals). Our study demonstrated that despite an increase in flood season precipitation leading to an increase in reservoir discharge, it had a greater impact on sustainable water management compared to the increase in non-flood season precipitation. Furthermore, in scenarios combining rainfall and temperature, the reliability of reservoir water supply showed greater variations than the sum of individual reliability changes in rainfall and temperature scenarios. This difference was attributed to the opposing effects of decreased and increased precipitation, each causing limitations in water and energy-limited evapotranspiration. These results were expected to enhance the efficiency of reservoir operation.

Theoretical Study on Fuel Savings of Marine Diesel Engine by Exhaust-Gas Heat-Recovery System of Combined Cycle (복합 사이클의 배기가스 열회수 시스템에 의한 선박용 디젤엔진의 연료 절약에 관한 이론적 연구)

  • Choi, Byung Chul;Kim, Young Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.171-179
    • /
    • 2013
  • The thermodynamic characteristics of a combined cycle applied with a topping cycle such as a trilateral cycle at relatively high temperatures and a bottoming cycle such as an organic Rankine cycle at relatively low temperatures have been theoretically investigated. This is an electric generation system used to recover the waste heat of the exhaust gas from a diesel engine used for the propulsion of a large ship. As a result, when the boundary temperature between the topping and the bottoming cycles increased, the system efficiencies of energy and exergy were simultaneously maximized because the total exergy destruction rate (${\sum}\dot{E}_d$) and exergy loss ($\dot{E}_{out2}$) decreased, respectively. In the case of a marine diesel engine, the waste heat recovery electric generation system can be utilized for additional propulsion power, and the propulsion efficiency was found to be improved by an average of 9.17 % according to the engine load variation, as compared to the case with only the base engine. In this case, the specific fuel consumption and specific $CO_2$ emission of the diesel engine were reduced by an average of 8.4% and 8.37%, respectively.

Geochemical Characteristics of Allanite from Rare Metal Deposits in the Chungju Area, Chungcheongbuk-Do (Province), Korea (충주지역 희유원소광상에서 산출되는 갈렴석의 지구화학적특성)

  • Park, Maeng-Eon;Kim, Gun-Soo;Choi, In-Sik
    • Economic and Environmental Geology
    • /
    • v.29 no.5
    • /
    • pp.545-559
    • /
    • 1996
  • Rare metal (Nb-Zr-REE) ore deposits are located in the Chungju area. Geotectonically, the rare metal ore deposits are situated in the transitional zone between Kyeonggi massif and Okcheon belt. The rare metal deposits are distributed in Kyemyeongsan Formation which consist of schist and alkaline igneous rocks. Alkali granite has suffered extensive post-magmatic metasomatism and hydrothermal processes. The ore contains mainly Ce-La, Ta-Nb, Y, Y-Nd, Nd-Th group minerals. More than 15 RE and REE minerals are found in the ore deposits. Allanite, one of the Ce-La rich REE minerals belonging to the epidote group, is the most common mineral in the studied area. The allanite- bearing rocks may be devided into seven types by features of occurrence and mineral associations; zircon type (ZT), allanite-vein type (AT), feldspar type (KT), fluorite type (FT), quartz-mica type (QT), iron-oxide type (MT), and amphibole type (HT). The allanite veins (AT) and zircon rich rocks (ZT) contain the highest total REE contents. Differences in REE abundance can be interpreted in terms of varying portions of magmatic hydrothermal fluid. Petrographical and chemical data are presented for allanites which were collected from different types. The allanites show wide variations in optical properties, due in part to differences in their chemical composition (depending on the types) and to the degree of crystallinity of the individual specimens. Allanite metamicts in biotite are generally surrounded by well developed pleochroic haloes. Usually, allanite is accompanied by zircon and other REE-bearing minerals. CaO and total REE contents $({\sum}RE_2O_3)$ range from 9.29 to 18.79% and 11.66 to 26.31%, respectively. Also, SiO, (28.87~32.61%), $Al_2O_3$ (8.30~16.88%), and $Fc_2O_3$ (16.74~24.38%) contents show varying contents from type to type. The ${\sum}RE_2O_3$ of allanite has positive relationships with $Fe_2O_3$ and negative relaton with CaO, $SiO_2$, and $Al_2O_3$ Backscattered electron microscope images (BEl) of allanite shows that the its mineral composition and texture is very complex. The allanite-bearing hosts show distinct light REE enrichment with strong negative Eu anomaly except for HI. The HT has an almost flat REE distribution pattern with a small negative Eu anomaly. The chemical variation of the allanites with occurrences and mineral association can be related to condition of temperature and oxidation states in precipitation environment.

  • PDF

Statistical Analyses of Soil Moisture Data from Polarimetric Scanning Radiometer and In-situ (Polarimetric Scanning Radiometer 와 In-situ를 이용한 토양수분 자료의 통계분석)

  • Jang, Sun Woo;Jeon, Myeon Ho;Choi, Minha;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.487-495
    • /
    • 2010
  • Soil moisture is a crucial factor in hydrological system which influences runoff, energy balance, evaporation, and atmosphere. United States National Aeronautic and Space Administration (NASA) and Department of Agriculture (USDA) have established Soil Moisture Experiment (SMEX) since 2002 for the global observations. SMEX provides useful data for the hydrological science including soil moisture and hydrometeorological variables. The purpose of this study is to investigate the relationship between remotely sensed soil moisture data from aircraft and satellite and ground based experiment. C-band of Polarimetric Scanning Radiometer (PSR) that observed the brightness temperature provides soil moisture data using a retrieval algorithm. It was compared with the In-situ data for 2-30 cm depth at four sites. The most significant depth is 2-10 cm from the correlation analysis. Most of the sites, two data are similar to the mean of data at 10 cm and the median at 7 cm and 10 cm at the 10% significant level using the Rank Sum test and t-test. In general, soil moisture data using the C-band of the PSR was established to fit the Normal, Log-normal and Gumbel distribution. Soil moisture data using the aircraft and satellites will be used in hydrological science as fundamental data. Especially, the C-band of PSR will be used to prove soil moisture at 7-10 cm depths.

Validity of a Simulated Practical Performance Test to Evaluate the Mobility and Physiological Burden of COVID-19 Healthcare Workers Wearing Personal Protective Equipment (COVID-19 감염병 대응 의료진용 개인보호복의 동작성 및 생리적 부담 평가를 위해 개발된 모의 작업 프로토콜의 타당도)

  • Kwon, JuYoun;Cho, Ye-Sung;Lee, Beom Hui;Kim, Min-Seo;Jun, Youngmin;Lee, Joo-Young
    • Fashion & Textile Research Journal
    • /
    • v.24 no.5
    • /
    • pp.655-665
    • /
    • 2022
  • This study evaluated the validity of a newly developed mobility protocol examining the comfort functions and requirements of personal protective equipment (PPE) for COVID-19 healthcare workers. Eight males (age: 24.7 ± 3.0 y, height: 173.4 ± 2.3 cm, and body weight 69.9 ± 3.7 kg) participated in the following three PPE conditions: (1) Plastic gown ensemble, (2) Level D ensemble, and (3) Powered air purifying respirator (PAPR) ensemble. The mobility protocol consisted of 10 different tasks in addition to donning and doffing. The 10 tasks were repeated twice at an air temperature of 25oC with 74% RH. The results showed significant differences among the three PPE conditions in mean skin temperature, local skin temperatures (the forehead, thigh, calf, and foot), clothing microclimate (the chest and back), thermal sensation, thermal comfort, and humidity sensation, while there were no significant differences in heart rate or total sweat rate. At rest, the subjects felt less warm and more comfortable in the PAPR than in the Level D condition (P<0.05). However, subjective perceptions in the PAPR and Level D conditions became similar as the tasks progressed and mean skin and leg temperature became greater for the PAPR than the Level D condition (P<0.05). An interview was conducted just after completing the mobility test protocol, and suggestions for improving each PPE item were obtained. To sum up, the mobility test protocol was valid for evaluating the comfort functions of PPE for healthcare workers and obtaining requirements for improving the mobility of each PPE item.

Effect of Water Temperature and Stocking Density on Growth of Juvenile Red Drum Sciaenops ocellatus (사육수온과 밀도가 홍민어 Sciaenops ocellatus의 성장에 미치는 영향)

  • Choi, Young-Ung;Rho, Sum;Lee, Young-Don
    • Journal of Aquaculture
    • /
    • v.15 no.3
    • /
    • pp.131-138
    • /
    • 2002
  • Fed on commercial flounder diet at 20, 23 and $26^{\circ}C$ in semiclosed culture system for 32 weeks, the juvenile red drum (1.2 g) showed linear increase in daily feeding rate (DFR), growth (g/fish) and specific growth rate (SGR) with increasing temperature. In the second experimental series, the young red drum (214 g), cultured at densities of 2.16, 4.24 and 6.40 kg/$m^3$ in flow-through tanks at water temperatures from 12.3 to $27.2^{\circ}C$ for 25 weeks, grew faster at the stocking density of 2.16 kg/$m^3$ than at the densities of 4.24 and 6.40 kg/$m^3$ the difference in growth observed at the stocking densities of 4.24 and 6.40 kg/$m^3$ was not significant. The DFR and SGR were also significantly higher for the density group of 2.16 kg/$m^3$. Briefly, growth of the red drum increased with increasing tested range of temperature and was also faster with decreasing stocking density. However, the total growth (g/tank) increased with increasing stocking density.

Studies on the Artificial Seedling Production of Geoduck Clam, Panope japonica I. Spawning Induction and Hatching (코끼리조개의 인공종묘생산에 관한 연구 I. 산란유발 및 부화)

  • Lee, Chae-Sung;Rho, Sum;Park, Young-Je
    • Journal of Aquaculture
    • /
    • v.10 no.2
    • /
    • pp.113-121
    • /
    • 1997
  • In order to developed the techniques for artificial seedling production of geoduck clam, Panope japonica, various stimulution for spawning induction and hatching condition were studied. Spawning induction by the air day or UV-irradiation stimulus were not effective. Water temperature stimulus was responsed 15.0~25.0% in May and 10.0% in June. But spawning induction by the gonad incision was highest with 15.0~45.0%. Ammonium hydroxide (NH4OH) stimulus adding in seawater were responsed 15.0% at 8/1000N~10/1000N, and ammonium hyhroxide solution injected in the gonads were responsed 5.0~10.0% at 5/100N~7/100N. The highest fertilization and hatching rate at various water temperature were ranged 74.5~89.2% in 11~$17^{\circ}C, \;84.3~89.5%\;in\;8~14^{\circ}C$, respectively. the highest fertilization rate and hatching rate in various salinity were ranged 72.5~88.5% in 25~$35tetperthousand$, 82.7~86.9% in 30~$35tetperthousand$, respectively. The optimum water temperature and salinity for fertilization and hatching to the 11~14$^{\circ}C$ and 30~$35tetperthousand$, respectively.

  • PDF

The Behavior of Particulate-Bound logic Components and Their Relationships with Meteorological Parameters: Air-Sea Geochemistry of Inorganic and Organic tons in Cheiu Island (이온성분의 환경거동과 기상인자와의 관계: 제주지역을 중심으로 한 유.무기성 이온성분의 대기-해양지화학)

  • 김기현;이강웅
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.5
    • /
    • pp.479-490
    • /
    • 1998
  • The concentrations of ten inorganic (sodium, chloride, sulfate, ammonia, etc.) and three organic (acetate, formate, and MSA) ions associated with airborne particulate matter were measured from Cheju Island, Korea during the three field intensive campaigns conducted in (1) Sept./oct. 1997 (fall), (2) Dec. 1997 (winter), and (3) April 1998 (spring). The results of our measurements indicated that the concentration levels of most ionic species were decreasing significantly across the three experimental periods. The patterns of concentration reduction were clear as the sum of all cation and anion species changed dramatically across those periods such as 294> 144 > 65 and 193 >96>74 nequiv/m3, respectively. The changes were best explained in terms of the wind rose patterns of the study site. Since our sampling spot is located on the western-end point of Cheju Island, it is likely to reflect the effects of diverse sources such as natural, marine processes during NW and local non-maritime ones during SE winds. .Hence, the periodical changes in ionic concentrations may be accounted for by the comparable changes in wind direction. To further investigate environmental characteristics of these ionic components, correlation analysis was conducted not only between meteorological and ion data but between different ion-pairs. The results of these analyses confirm that the concentration levels of ionic species are strongly affected by wind speed and temperature and that there are certain patterns between ion species to which such effects apply. In light of the significance of the wind rose patterns in the area, we further extended these analyses into four data groups that were divided on the basis of wind direction. The results of these analyses showed that the strength of correlations between important pairs (e.g.:. between windspeed and most of major inorganic species including sodium and chloride) can be ranked on the distribution of major ions are very diverse, depending on data grouping scheme for such analysis. The results of this study thus suggest that environmental behavior of chemical components be analyzed in various respects, rather than simple standard, especially if measurements are made in complex environmental condition under which both natural and anthropogenic effects are competing each other.

  • PDF

Estimation of Crop Water Requirement Changes Due to Future Land Use and Climate Changes in Lake Ganwol Watershed (간월호 유역의 토지이용 및 기후변화에 따른 논밭 필요수량 변화 추정)

  • Kim, Sinaee;Kim, Seokhyeon;Hwang, Soonho;Jun, Sang-Min;Song, Jung-Hun;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.61-75
    • /
    • 2021
  • This study aims to assess the changes in crop water requirement of paddy and upland according to future climate and land use changes scenarios. Changes in the spatiotemporal distribution of temperature and precipitation are factors that lower the stability of agricultural water supply, and predicting the changes in crop water requirement in consideration of climate change can prevent the waste of limited water resources. Meanwhile, due to the recent changes in the agricultural product consumption structure, the area of paddy and upland has been changing, and it is necessary to consider future land use changes in establishing an appropriate water use plan. Climate change scenarios were derived from the four GCMs of the CMIP6, and climate data were extracted under two future scenarios, namely SSP1-2.6 and SSP5-8.5. Future land use changes were predicted using the FLUS (Future Land Use Simulation) model. Crop water requirement in paddy was calculated as the sum of evapotranspiration and infiltration based on the water balance in a paddy field, and crop water requirement in upland was estimated as the evapotranspiration value by applying Penman-Monteith method. It was found that the crop water requirement for both paddy and upland increased as we go to the far future, and the degree of increase and variability by time showed different results for each GCM. The results derived from this study can be used as basic data to develop sustainable water resource management techniques considering future watershed environmental changes.

Determination of the Nutritive Value of Tropical Biomass Products for Monogastrics Using Rats: 2. Effects of Drying Temperature, Ensiling and Level of Inclusion of Cassava Leaves and Sweet Potato Vines

  • Phuc, Bui Huy Nhu;Lindberg, Jan Erik;Ogle, Brian;Thomke, Sigvard
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.7
    • /
    • pp.994-1002
    • /
    • 2001
  • In a balance experiment with rats either 0, 25 or 50% of the crude protein (CP) provided as casein in the control diet was replaced with cassava leaves (CL) (Manihot esculenta Crantz) or sweet potato vines (SPV) (Ipomoea balala). CL were either sun-dried or oven-dried at $60^{\circ}C$ or $105^{\circ}C$ or ensiled, while the SPY were either sun-dried or ensiled. The experiment included 3 blocks with 30 rats in each and six individuals per treatment group. Drying at $105^{\circ}C$ resulted in a reduction of the lysine (Lys) content, suggestive of the occurrence of Maillard reactions. Ensiling CL and SPV slightly decreased the CP. content as well as the sum of essential amino acids. The apparent fecal CP digestibility (dCP) and nitrogen retention were negatively affected by increasing the level of replacement (p<0.01 and p<0.001, respectively). The impaired amino acid profile observed when drying CL at $105^{\circ}C$ was found to be related to a slight decrease in dCP (p<0.001) as well as N retention (p<0.005). The effects of sun-drying and oven-drying in reducing the HCN content in CL were more potent than when ensiling. By increasing the total dietary HCN supply serum thiocyanide level, as well as urinary thiocyanate and linamarin output, were increased, with a weak relationship between them. Sun-drying and ensiling with cane molasses as additive successfully preserved the nitrogenous constituents and could be a means of preserving fresh green feed under tropical conditions.