• Title/Summary/Keyword: sulfuric acid catalyst

Search Result 80, Processing Time 0.019 seconds

Furfural Production From Xylose by Using Formic Acid and Sulfuric Acid (포름산 및 황산 촉매를 이용한 자일로스로부터 푸르푸랄 생산)

  • Lee Seungmin ;Kim Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.561-569
    • /
    • 2023
  • Furfural is a platform chemical that is produced from xylose, one of the hemicellulose components of lignocellulosic biomass. Furfural can be used as an important feedstock for phenolic compounds or biofuels. In this study, we compared and optimized the conditions for producing furfural from xylose in a batch system using two types of catalysts: sulfuric acid, which is commonly used in the furfural production process, and formic acid, which is an environmentally friendly catalyst. We investigated the effects of xylose initial concentration (10 g/L~100 g/L), reaction temperature (140~200 ℃), sulfuric acid catalyst (1~3 wt%), formic acid catalyst (5~10 wt%), and reaction time on the furfural yield. The optimal conditions according to the type of catalyst were as follows. For sulfuric acid catalyst, 3 wt% of catalyst concentration, 50 g/L of xylose initial concentration, 180 ℃ of temperature, and 10min of reaction time resulted in a maximum furfural yield of 59.0%. For formic acid catalyst, 5 wt% of catalyst concentration, 50 g/L of xylose initial concentration, 180 ℃ of temperature, and 150 min of reaction time resulted in a furfural yield of 65.3%.

Sulfuric Acid Leaching of Valuable Metals from Spent Petrochemical Catalyst using Hydrogen Peroxide as a Reducing Agent

  • Park, Kyung-Ho;Sohn, Jeong-Soo;Kim, Jong-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.478-481
    • /
    • 2001
  • The spent petrochemical catalyst used in the manufacturing process of terephthalic-acid contains valuable metals such as cobalt and manganese. To recover these metals, sulfuric acid leaching was performed with hydrogen peroxide as a reducing agent. Low extractions of Mn, Co and Fe were obtained by sulfuric acid leaching without reducing agent. With adding hydrogen peroxide as a reducing agent, the high extraction of these metals could be obtained. Different from general leaching experiment, the extraction rates of metal components were decreased with increasing reaction temperature in this case. Under the optimum condition, the extraction rates of Mn, Co and Fe were 93.0%, 87.0% and 100% respectively.

  • PDF

Investigation of the Effective Catalyst for Organosolv Pretreatment of Liriodendron tulipifera

  • Koo, Bon-Wook;Gwak, Ki-Seob;Kim, Ho-Yong;Choi, Joon-Weon;Yeo, Hwan-Myeong;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.149-158
    • /
    • 2010
  • Organosolv pretreatments which utilized sulfuric acid, sodium hydroxide and ammonia as catalysts were conducted to screen the effective catalyst for organosolv pretreatment of Liriodendron tulipifera. The enzymatic hydrolysis was achieved effectively with sulfuric acid (74.2%) and sodium hydroxide (63.7%). They were thus considered as effective catalysts for organosolv pretreatment of L. tulipifera. The organosolv pretreatments with sulfuric acid and sodium hydroxide showed a different behavior on the reaction mechanism. The pretreatment with sulfuric acid increased the biomass roughness and pore numbers. On the other hand, the pretreatment with sodium hydroxide enhanced the surface area due to the size reduction and minor defiberization which were caused by hemicellulose degradation at an initial stage and more defiberization by lignin degradation at a later stage. The organosolv pretreatment with sodium hydroxide was performed at several different conditions to evaluate effectiveness of sodium hydroxide as a catalyst for organosolv pretreatment. According to the results of enzymatic digestibility, the changes of chemical composition and the morphological analysis of pretreated biomass, it was suggested that the pretreatment time impacted primarily on enzymatic hydrolysis. Increase in surface area during the pretreatment was a major cause for improvement in enzymatic digestibility when sodium hydroxide was used as a catalyst.

Preparation of Calcium Sulfate Hemihydrate Using Stainless Refinery Sludge and Waste Sulfuric Acid

  • Eun, Hee-Tai;Ahn, Ji-Whan;Kim, Hwan;Kim, Jang-Su;Sung, Ghee-Woong
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.432-436
    • /
    • 2001
  • In this study, calcium sulfate(gypsum) powder was obtained using waste sulfuric acid and stainless refinery sludge by- produced from chemical reagent and the iron industry, by the neutralization of waste sulfuric acid. As variables for the experiment the mole ratio of the H$_2$SO$_4$ : Ca(OH)$_2$, the pH, the reaction temperature and time, the amount of catalyst were used. The crystal shape and microstructure of obtained powder were observed by XRD and SEM, and the thermal property was investigated by DTA. As the NaCl is added 0~20wt% as a catalyst to the H$_2$SO$_4$ : Ca(OH)$_2$, system it can be found that the crystal shape goes through the processes as follows : gypsum dihydratlongrightarrowgypsum hemihydrate+gypsum dihydratelongrightarrowgypsum hemihydrate. And gypsum hemihydrate is $\beta$-type as the result of DTA. As waste sulfuric acid and stainless refinery sludge were used, the pH of reacted solution (which was 0.8) was rapidly raised up to 8~9 by the addition of stainless sludge and gypsum dihydrate was produced as a by-product. Therefore, it was found that stainless refinery sludge is sufficiently applicable for the neutralization of waste sulfuric acid.

  • PDF

Biodiesel production from soapstock by acid catalyst (산촉매를 이용한 Soapstock으로부터 바이오디젤의 제조)

  • Park, Ji-Yeon;Kim, Young-Joo;Kim, Deog-Keun;Lee, Joon-Pyo;Park, Soon-Chul;Lee, Jin-Suk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.541-543
    • /
    • 2006
  • The feasibility of biodiesel production from soapstock by acid catalyst was tested. The water content of soapstock was more than 40%. Before the esterification of soapstock, the pre-treatment of soapstock was conducted adding potassium hydroxide and sulfuric acid. The pre-treated soapstock contained 99.6wt% of free fatty acid. When the free fatty acid was esterified with methanol, the fatty acid methyl ester content became 91.7wt% under the solid acid catalyst, Amberlyst-15. When this biodiesel was distilled the methyl ester content was 98.1wt% which satisfied the biodiesel Standard. Amberlyst-15 could be recovered easily because it was the soliid catalyst. When sulfuric acid was used as the acid catalyst, the fatty acid methyl ester content was 91.0wt%. From the results, it was possible to produce biodiesel efficiently from soapstock after pre-treatment. Because soapstock is very cheap, it will become good feedstock for biodiesel product ion.

  • PDF

Sulfuric Acid Leaching of Valuable Metals from Spent Petrochemical Catalyst using Hydrogen Peroxide as a Reducing Agent (石油化學 廢觸媒로부터 過酸化水素를 還元劑로이용한 有價金屬의 황산침출)

  • 박경호;손정수;김종석
    • Resources Recycling
    • /
    • v.10 no.2
    • /
    • pp.20-26
    • /
    • 2001
  • Sulfuric acid leaching of Mn, Co and Fe from spent petrochemical catalyst was performed using hydrogen peroxide as a reducing agent. Low extraction of Mn, Co and Fe was obtained by only sulfuric acid. When hydrogen peroxide were added as a reducing agent, the high extraction of these metals could be obtained. Different from ordinary leaching, the extraction per-centages of metal components decreased with elevating leaching temperature in this process. Under the optimum condition, the extraction percentages of Mn, Co and Fe were 93.0% , 87.0% and 100% respectively.

  • PDF

Solid-Phase Synthesis of 2-Arylbenzothiazole Using Silica Sulfuric Acid under Microwave Irradiation

  • Niralwad, Kirti S.;Shingate, Bapurao B.;Shingare, Murlidhar S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.981-983
    • /
    • 2010
  • The condensation of several aromatic/heteroaromatic aldehydes with 2-aminothiophenol catalyzed by silica sulfuric acid under microwave irradiation afforded 2-arylbenzothiazoles in high yields and short reaction times under solvent-free conditions. The major advantages of the present method are good yields, ecofriendly, reusable catalyst, mild and solvent-free reaction conditions.

Liquefaction of Wood and It's Application for Adhesives - Acid-Catalyzed Liquefaction of Wood with Phenol - (목재의 용액화와 접착제에의 응용 - 산촉매하에서 페놀에 의한 목재의 용액화 -)

  • Han, Gyu-Seong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.88-93
    • /
    • 1995
  • Acid-catalysts were used to accelerate the liquefaction of wood with phenol. Sulfuric acid was quite excellent as a acid-catalyst of liquefaction of wood. It's proper dose was 3% of oven-dried weight of wood to get the 10% of target degree of residue, when the reaction time was 2 hours. The liquefaction of wood catalyzed with sulfuric acid was easily carried out at low temperature of 140$^{\circ}C$, but the degrees of residue decreased gradually with the increase of reaction temperature. The behaviors of liquefaction of oak and radiata pine were nearly same.

  • PDF

Recovery of Platinum from Spent Petroleum Catalysts by Substrate Dissolution in Sulfuric Acid

  • Lee, Jae-Chun;Jinki Jeong;Kim, Wonbaek;Jang, Hee-Dong
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.472-477
    • /
    • 2001
  • Spent catalysts containing platinum were generated in petroleum refinery and other chemical industries. The reclamation of precious metals from such wastes has long been attempted in view of their rare, expensive and indispensable nature. In this study, the recovery of platinum from petroleum catalysts was attempted by a method consisting mainly of dissolving alumina substrate with sulfuric acid thereby concentrating insoluble platinum. Also, platinum dissolved partially in sulfuric acid was recovered by a cementation method using aluminum metal as a reductive agent. The effect of temperature, time, concentration of sulfuric acid. and pulp density on the dissolution of substrate was investigated. When the substrate of platinum catalyst was ${\gamma}$-AI$_2$O$_3$ about 95% alumina was dissolved in 6.0M sulfuric acid at 10$0^{\circ}C$ for 2 hours. When the substrate was the mixture of ${\gamma}$-A1$_2$O$_3$and $\alpha$-A1$_2$O$_3$about 92% was dissolved after 4 hours. As a result, more than 99% of platinum could be recovered by this method and aluminum sulfate was obtained as byproduct.

  • PDF