• Title/Summary/Keyword: sulfur volatile compound

Search Result 62, Processing Time 0.029 seconds

A Study of Relative Performance of SPME Method for the Analysis of VOC and Some Major Odorous Compounds (SPME에 기초한 VOC 및 주요 악취물질들의 상대적 검량특성에 대한 연구)

  • Im, Moon-Soon;Song, Hee-Nam;Kim, Ki-Hyun;Sa, Jae-Hwan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.1
    • /
    • pp.39-49
    • /
    • 2007
  • In this study, the performance characteristics of solid phase microextraction (SPME) were investigated for three major odorous groups that consist of 10 individual compounds ([1] volatile organic compounds (VOC): benzene, toluene, p-xylene and styrene, [2] reduced sulfur compounds (RSC): hydrogen sulfide, methyl mercaptan, dimethylsulfide (DMS), dimethyldisulfide (DMDS), and carbon disulfide, and [3] amine: trimethylamine (TMA)). For the purpose of a comparative analysis, two types of SPME fiber ([1] polidimethylsiloxane/divinilbenzene (P/D) and [2] $Carboxen^{TM}$/polidimethylsiloxane (C/P)) were test ε d against each other for a series of standards prepared at different concentration levels (100, 200, and 500 ppb). To compare the analytical performance of each fiber, all standards were analyzed for the acquisition of calibration data sets for each compound. The results of P/D fiber generally showed that its calibration slope increased as a function of molecular weight across different VOCs; however, those of C/P fiber showed a fairly reversed trend. Besides, we confirmed that the application of SPME is limited to many sulfur compounds; only two compounds (DMS and DMDS) are sensitive enough to draw calibration results out of SPME. The calibration data for RSC show generally enhanced slop values for C/P relative to P/D fiber. However, in the case of TMA, we were not able to find a notable difference in their performance.

Elution Profiles of Volatile Compounds and Free Amino Acids during Alcohol Soaking of Garlic(Allum sativum L.) (마늘의 alcohol 침지 중 휘발성 향기성분과 침출유리아미노산 함량)

  • Lee, Young-Guen
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.286-292
    • /
    • 2007
  • Free amino acids and volatile compounds of fresh garlic and its liqueur were investigated to search elution profile of those components as basic data for development of garlic liqueur. The garlic was soaked in 20% alcohol solution and then sampled every week for 5 weeks. The major free amino acids were L-aspartic acid, L-glutamic acid, L-arginine, L-alanine, L-proline, L-asparagine and L-serine. Neutral amino acids such as L-threonine, L-proline, L-valine and L-leucine, and aromatic amino acids such as tyrosine and phenylalanine were eluted over 80% of those content in fresh garlic after 3 weeks of soaking, but acidic, basic and sulfur containing amino acids were below 80% even after 5 weeks. Sulfide compounds such as diallyl trisulfide, diallyl disulfide, methyl allyl disulfide, 2-vinyl-4H-1,3-dithi in, 3-vinyl-3,4-dihydro-1,2-dithiin, 3,5-diethyl-1,24-trithiolane, isobutyl isothiocyanate and diallyl sulfide were identified as major volatile compounds of fresh garlic by using GC/MS. Among volatile compounds of fresh garlic, allyl alcohol, diallyl disulfide, 3,5-diethyl-1,2,4-trithiolane, diallyl trisulfide and 3,4-dimethoxy furan were eluted to liqueur, but those compounds except 3,5-diethyl-1,2,4-trithiolane were lowered in liqueur during soaking. Furfural, 5-methylfurfural, 5-hydroxymethylfurfural, dimethyl pyrazine, furfuryl alcohol, 3-hydroxy-2-bytanone and 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyr-an-4-one were generated newly and their content increased in liqueur during soaking.

Impact of High Temperature on the Maillard Reaction between Ribose and Cysteine in Supercritical Carbon Dioxide

  • Xu, Honggao;He, Wenhao;Liu, Xuan;Gao, Yanxiang
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.66-72
    • /
    • 2009
  • An aqueous ribose-cysteine model system (initial pH 5.6) was conventionally heated to the same browning at varying temperatures ($120-180^{\circ}C$), supercritical carbon dioxide (SC-$CO_2$, 20 MPa) was also applied on the same matrices for same periods at each temperature and about 20% reduction of the absorbance at 420 nm was observed as compared with sole thermal treatment. The headspace volatiles from Maillard reaction mixtures were analyzed by solid-phase microextraction (SPME) in combination with gas chromatography and mass spectrometry (GC-MS), and predominated with sulfur containing compounds, such as thienothiophenes, polysulfur alicyclics, thiols, and disulfides. Reaction temperature exhibited complex effects on volatiles formation and those effects became further complicated by the SC-$CO_2$ treatment. The formation of noncarbonyl polysulfur heterocyclic compounds and thienothiophenes was generally favored at high temperatures. Most volatiles were inhibited in SC-$CO_2$ as compared with thermal treatment alone, however, the well-known meaty aromatic compounds, such as thiols and disulfides, were obviously enhanced.

The Effect of Polyphenol Oxidase on Deodorizing Activity of Apple Extract against Methyl Mercaptan (사과 추출물의 구취억제효과에 대한 Polyphenol Oxidase의 영향)

  • 조상원;곽기석;이주항;윤영수;구연숙
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.6
    • /
    • pp.1301-1304
    • /
    • 2001
  • Deodorizing activity of polyphenol cxidase (PPO) extracted from apples was investigated by measuring the changes of methyl mercaptan as an indicator of halitosis in human mouths. In the studies of apple extracts on deodorizing activity, the deodorizing activity was increased with the amount of apple extracts. In the cases of adding PPO to the low molecular fraction of apple extracts, the deodorizing activities were increased with the amount of the law molecular fraction of apple extracts and the reaction time of the extracts with PPO. Deodorizing activities of PPO is thought that o-quinone as an intermidiate produced by an oxidative reaction of PPO during enzymatic browning reactions may react with methyl mercaptan to form a non-volatile and sulfur-containing compound .

  • PDF

Quality characteristics of retort samgyetang marinated with different levels of soy sauce and processed at different F0 values

  • Kim, Juntae;Utama, Dicky Tri;Jeong, Hae Seong;Barido, Farouq Heidar;Lee, Sung Ki
    • Journal of Animal Science and Technology
    • /
    • v.62 no.5
    • /
    • pp.713-729
    • /
    • 2020
  • The aim of this study was to develop retorted samgyetang marinated with different levels of soy sauce and processed at different F0 (thermal death time at 121℃) values. The tested marinade series comprised different percentages of soy sauce in water (0%, 25%, and 50% [w/w]) containing a fixed concentration of sodium tripolyphosphate (0.3% [w/w]). Following marination, samgyetang was prepared and subjected to retort processing, until an F0 value of either 8 or 29 was achieved. Meat quality analysis of the breast meat, sensory evaluation, and aroma analysis were performed as indicators of acceptability. The meat pH decreased as the soy sauce content increased, regardless of the F0 value. The shear force value significantly decreased as the concentration of soy sauce increased, but increased as the F0 value increased (p < 0.05). Lipid oxidation was not affected by marination, but increased significantly as the F0 value increased (p < 0.05). The proportion of polyunsaturated fatty acids decreased significantly (p < 0.05) as the F0 value increased. The total alkane content decreased as the F0 value increased (p < 0.05). Changes in the total volatile sulfur compound and 2-butyl-1-octanol content were affected by soy sauce marination. Marination using 25% soy sauce and retort sterilization, until an F0 value of either 8 or 29 was achieved, improved the acceptability of samgyetang. Therefore, marination using 25% soy sauce and retort sterilization until an F0 value of 8 is the process recommended for developing a soy sauce-flavored, retorted samgyetang product of acceptable quality.

Analysis of Significant Factors in the Flayer of Traditional Korean Soy Sauce (III) - Aroma Compound Analysis - (한국전통간장의 맛과 향에 관여하는 주요 향미인자의 분석(III) -향기성분 분석 -)

  • Park, Hyun-Kyung;Sohn, Kyung-Hee;Park, Ok-Jin
    • Journal of the Korean Society of Food Culture
    • /
    • v.12 no.2
    • /
    • pp.173-182
    • /
    • 1997
  • This study was carried out in order to investigate effective aroma components of Korean traditional soy sauce. Volatile aroma compounds were extracted by solvent extraction, TMS esterification of methyl acetate extracts and SDE, and analyzed by GC/MSD. 140 voltile aroma compounds were detected by three different extraction methods. Most abundant volatile compounds were acids and phenols and identified aldehydes, hydrocarbons, ketones, furans, furanone, alcohols, esters, nitrogen compounds, sulfur compounds and thiazoles, too. In the analytical sensory evaluation of soy sauce aroma, there were significant differences between each soy sauce sample in all test item. To sum up, Sweet odor was high in Kyupjang. Nutty odor and traditional soy sauce odor were similarly high in Kyupjang and high concentration soy sauce. Kyupjang had high score in overall odor preference than Chungiangs. The result of multiple regression of soy sauce odor characteristics and gas chromatography pattern demonstrated that offensive and sour odor was affected by octadecanoic acid. Contributive compounds to sweet odor were 1,2-benzenedicarboxylic acid and 3,6-dioxa-2,7-disilacotane. Benzoic acid 4-methyl ethyl ester and nonacotane were identified as major compounds of nutty odor. Contribu live variables of traditional soy sauce odor were benzoic acid 4-methyl ethyl ester and 9,12-octadecadienoic acid. The main factors of odor preference were 3-methyl pentanoic acid, acetic acid, 2,6-dimethyl heptadecane and 3,6-dioxa-2,7-disilacotane.

  • PDF

Development of Meat-like Flavor by Maillard Reaction with Addition of Natural Flavoring Materials (천연 조미향상물질의 첨가에 의한 Maillard 반응에서 Meat-like Flavor의 개발)

  • Ko, Soon-Nam;Nam, Hee-Sop;Kim, Woo-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.839-846
    • /
    • 1997
  • Addition of three natural flavoring materials, hydrolyzed vegetable protein (HVP), hydrolyzed animal protein (HAP) and yeast extract (YE), into 0.2 M cystine-0.1 M lactose-0.1 M maltose solution (control) was studied for development of meat-like flavor by Maillard reaction. The HVP, HAP and YE were added individually at various concentrations and were mixed at selected concentration in order to compare their effects. The absorbance, color, sensory characteristics and volatile compounds of the solutions after the reaction at $100^{\circ}C$ for 8 hr were measured. The results showed that the absorbances of reaction solution at 420 nm and 278 nm were increased as reaction time and the concentration of the natural flavoring material increased. Also ‘L’ values of reaction solutions added with HVP, HAP or YE decreased while the ‘b’ value increased slightly. From the results of sensory evaluation 1.16% HVP, 0.94% HAP, 1.48% YE or 1.16% HVP + 0.94% HAP were selected as the appropriate substrates for the meat-like flavor development. The volatile compounds identified by GC/MS for the control and those added with 1.16% HVP or 1.16% HVP+0.94% HAP were 1 hydrocarbons, 9 aldehydes, 5 ketones, 1 ester, 5 alcohols, 2 aromatics(benzene), 2 furans, 1 sulfur compound.

  • PDF

Oral malodor-reducing effects by oral feeding of Weissella cibaria CMU in Beagle dogs (Weissella cibaria CMU 경구투여가 비글의 구취 저하에 미치는 효과)

  • Do, Kyung-Hyo;Park, Ho-Eun;Kang, Mi-Sun;Kim, Jong-Tae;Yeu, Ji-Eun;Lee, Wan-Kyu
    • Korean Journal of Veterinary Research
    • /
    • v.58 no.2
    • /
    • pp.87-94
    • /
    • 2018
  • This study assessed the effects of Weissella cibaria (W. cibaria) CMU on oral health in male and female beagles (n = 18) by measuring oral malodor and periodontal disease-related parameters (calculus, plaque, and gingivitis indices). Oral malodor and indicators of periodontal disease were assessed in five treatment groups: negative control (scaling and 0.24 mg of maltodextrin, n = 3), positive control (0.24 mg of maltodextrin, n = 3), and W. cibaria CMU groups (each n = 4) at low (CMU-L, $2{\times}10^7$ colony forming unit [CFU]), medium (CMU-M, $2{\times}10^8CFU$), and high (CMU-H, $2{\times}10^9CFU$) concentrations. After feeding with W. cibaria CMU for 6 weeks, total volatile sulfur compound concentrations in the CMU-L ($2.0{\pm}1.04ng/10mL$), CMU-M ($2.4{\pm}1.05ng/10mL$), and CMU-H ($2.6{\pm}1.33ng/10mL$) groups were significantly lower than in the positive control group ($3.2{\pm}1.65ng/10mL$). Also, CMU-L ($1.4{\pm}0.83ng/10mL$) and CMU-H ($1.9{\pm}1.14ng/10mL$) groups had methyl mercaptan levels lower than that in the positive control group ($2.4{\pm}1.21ng/10mL$) at week 2. The plaque index was significantly lower in the CMU-H group ($4.5{\pm}0.28$) than in the positive control group ($5.9{\pm}1.08$) at week 6. W. cibaria CMU could be useful as a novel oral hygiene probiotics for reducing volatile sulfur compounds production and inhibiting plaque growth in companion animals.

Comparative analysis of volatile and non-volatile flavor compounds in rice paste made by α-amylase according to cultivars (α-amylase를 이용하여 제조한 쌀 페이스트의 품종에 따른 휘발성비휘발성 향미성분 비교분석)

  • Son, Eun Young;Kim, Hye Won;Kim, Sun Ah;Lee, Sang Mi;Paek, Se Hee;Kim, Sun Hee;Seo, Yong Ki;Park, Hye-Young;Oh, Sea-Kwan;Kim, Young-Suk
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.3
    • /
    • pp.283-291
    • /
    • 2017
  • Rice that the half of population in the world eats as a staple food is mostly produced and consumed in Asia. However, its consumption is nowadays decreasing mainly due to diet diversity. Accordingly, some attempts are in demand to enhance the utilization of rice. In this study, profiling of volatile and non-volatile flavor components in rice pastes obtained by ${\alpha}$-amylase was performed and compared according to nine different rice cultivars domestically cultivated in Korea using gas chromatography-mass spectrometry combined by solid phase microextraction and gas chromatography-time of flight-mass spectrometry after a derivatization, respectively. In total, 46 volatile compounds identified included 6 alcohols, 6 aldehydes, 4 esters, 4 furan derivatives, 4 ketones, 1 acid, 1 sulfur-containing compound, 7 hydrocarbons, 5 aromatics and 8 terpenes. The non-volatile flavor components found were composed of 12 amino acids, 6 sugars and 4 sugar alcohols. In principal component analysis, rice paste samples could be discriminated according to cultivars on the score plots of volatile and non-volatile flavor compounds. In particular, some volatile compounds such as pentanal and 4,7-dimethylundecane could contribute to distinguish Senong 17 white and Senong 17 brown, whereas ethanol, 6-methylhep-5-en-2-one, and tridecane could be highly related to the discrimination of Iipum from other cultivars. Among non-volatile compounds, some amino acids such as glycine, serine and ${\gamma}$-aminobutyric acid and some sugars such as sucrose and fructose were mainly responsible for the discrimination of Danmi from the other cultivars. On the other hand, galactose, arabitol and mannose were more closely related to Senong 17 white than Senong 17 brown.

A study on the air pollutant emission trends in Gwangju (광주시 대기오염물질 배출량 변화추이에 관한 연구)

  • Seo, Gwang-Yeob;Shin, Dae-Yewn
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.4
    • /
    • pp.1-26
    • /
    • 2009
  • We conclude the following with air pollution data measured from city measurement net administered and managed in Gwangju for the last 7 years from January in 2001 to December in 2007. In addition, some major statistics governed by Gwangju city and data administered by Gwangju as national official statistics obtained by estimating the amount of national air pollutant emission from National Institute of Environmental Research were used. The results are as follows ; 1. The distribution by main managements of air emission factory is the following ; Gwangju City Hall(67.8%) > Gwangsan District Office(13.6%) > Buk District Office(9.8%) > Seo District Office(5.5%) > Nam District Office(3.0%) > Dong District Office(0.3%) and the distribution by districts of air emission factory ; Buk District(32.8%) > Gwangsan District(22.4%) > Seo District(21.8%) > Nam District(14.9%) > Dong District(8.1%). That by types(Year 2004~2007 average) is also following ; Type 5(45.2%) > Type 4(40.7%) > Type 3(8.6%) > Type 2(3.2%) > Type 1(2.2%) and the most of them are small size of factory, Type 4 and 5. 2. The distribution by districts of the number of car registrations is the following ; Buk District(32.8%) > Gwangsan District(22.4%) > Seo District(21.8%) > Nam District(14.9%) > Dong District(8.1%) and the distribution by use of car fuel in 2001 ; Gasoline(56.3%) > Diesel(30.3%) > LPG(13.4%) > etc.(0.2%). In 2007, there was no ranking change ; Gasoline(47.8%) > Diesel(35.6%) > LPG(16.2%) >etc.(0.4%). The number of gasoline cars increased slightly, but that of diesel and LPG cars increased remarkably. 3. The distribution by items of the amount of air pollutant emission in Gwangju is the following; CO(36.7%) > NOx(32.7%) > VOC(26.7%) > SOx(2.3%) > PM-10(1.5%). The amount of CO and NOx, which are generally generated from cars, is very large percentage among them. 4. The distribution by mean of air pollutant emission(SOx, NOx, CO, VOC, PM-10) of each county for 5 years(2001~2005) is the following ; Buk District(31.0%) > Gwangsan District(28.2%) > Seo District(20.4%) > Nam District(12.5%) > Dong District(7.9%). The amount of air pollutant emission in Buk District, which has the most population, car registrations, and air pollutant emission businesses, was the highest. On the other hand, that of air pollutant emission in Dong District, which has the least population, car registrations, and air pollutant emission businesses, was the least. 5. The average rates of SOx for 5 years(2001~2005) in Gwangju is the following ; Non industrial combustion(59.5%) > Combustion in manufacturing industry(20.4%) > Road transportation(11.4%) > Non-road transportation(3.8%) > Waste disposal(3.7%) > Production process(1.1%). And the distribution of average amount of SOx emission of each county is shown as Gwangsan District(33.3%) > Buk District(28.0%) > Seo District(19.3%) > Nam District(10.2%) > Dong District(9.1%). 6. The distribution of the amount of NOx emission in Gwangju is shown as Road transportation(59.1%) > Non-road transportation(18.9%) > Non industrial combustion(13.3%) > Combustion in manufacturing industry(6.9%) > Waste disposal(1.6%) > Production process(0.1%). And the distribution of the amount of NOx emission from each county is the following ; Buk District(30.7%) > Gwangsan District(28.8%) > Seo District(20.5%) > Nam District(12.2%) > Dong District(7.8%). 7. The distribution of the amount of carbon monoxide emission in Gwangju is shown as Road transportation(82.0%) > Non industrial combustion(10.6%) > Non-road transportation(5.4%) > Combustion in manufacturing industry(1.7%) > Waste disposal(0.3%). And the distribution of the amount of carbon monoxide emission from each county is the following ; Buk District(33.0%) > Seo District(22.3%) > Gwangsan District(21.3%) > Nam District(14.3%) > Dong District(9.1%). 8. The distribution of the amount of Volatile Organic Compound emission in Gwangju is shown as Solvent utilization(69.5%) > Road transportation(19.8%) > Energy storage & transport(4.4%) > Non-road transportation(2.8%) > Waste disposal(2.4%) > Non industrial combustion(0.5%) > Production process(0.4%) > Combustion in manufacturing industry(0.3%). And the distribution of the amount of Volatile Organic Compound emission from each county is the following ; Gwangsan District(36.8%) > Buk District(28.7%) > Seo District(17.8%) > Nam District(10.4%) > Dong District(6.3%). 9. The distribution of the amount of minute dust emission in Gwangju is shown as Road transportation(76.7%) > Non-road transportation(16.3%) > Non industrial combustion(6.1%) > Combustion in manufacturing industry(0.7%) > Waste disposal(0.2%) > Production process(0.1%). And the distribution of the amount of minute dust emission from each county is the following ; Buk District(32.8%) > Gwangsan District(26.0%) > Seo District(19.5%) > Nam District(13.2%) > Dong District(8.5%). 10. According to the major source of emission of each items, that of oxides of sulfur is Non industrial combustion, heating of residence, business and agriculture and stockbreeding. And that of NOx, carbon monoxide, minute dust is Road transportation, emission of cars and two-wheeled vehicles. Also, that of VOC is Solvent utilization emission facilities due to Solvent utilization. 11. The concentration of sulfurous acid gas has been 0.004ppm since 2001 and there has not been no concentration change year by year. It is considered that the use of sulfurous acid gas is now reaching to the stabilization stage. This is found by the facts that the use of fuel is steadily changing from solid or liquid fuel to low sulfur liquid fuel containing very little amount of sulfur element or gas, so that nearly no change in concentration has been shown regularly. 12. Concerning changes of the concentration of throughout time, the concentration of NO has been shown relatively higher than that of $NO_2$ between 6AM~1PM and the concentration of $NO_2$ higher during the other time. The concentration of NOx(NO, $NO_2$) has been relatively high during weekday evenings. This result shows that there is correlation between the concentration of NOx and car traffics as we can see the Road transportation which accounts for 59.1% among the amount of NOx emission. 13. 49.1~61.2% of PM-10 shows PM-2.5 concerning the relationship between PM-10 and PM-2.5 and PM-2.5 among dust accounts for 45.4%~44.5% of PM-10 during March and April which is the lowest rates. This proves that particles of yellow sand that are bigger than the size $2.5\;{\mu}m$ are sent more than those that are smaller from China. This result shows that particles smaller than $2.5\;{\mu}m$ among dust exist much during July~August and December~January and 76.7% of minute dust is proved to be road transportation in Gwangju.