The Hanae deposit is located within the Cretaceous Gyeongsang Basin. The Cu-bearing hydrothermal quartz vein formed by narrow open-space filling along fracture in the sedimentary rocks as Jindong Formation. The Hanae Cu-bearing hydrothermal deposit shows a paragenetic sequence of pyrrhotite-pyrite $\rightarrow$ pyrite-chalcopyrite-sphalerite(${\pm}$Bi-bearing tellurides) $\rightarrow$ Ag-bearing telluride mineralization $\rightarrow$ secondary mineralization. Fluid inclusion data indicate that the Hanae Cu-bearing hydrothermal mineralization occurred from dominantly aqueous fluids at temperatures of $400^{\circ}C-200^{\circ}C$. Equilibrium thermodynamic interpretation of the mineral paragenesis and assemblages combined with fluid inclusion data indicate that early main Cu-bearing ore mineralization in the vein starts at about $350^{\circ}C$ which corresponds to sulfur fugacity from about $10^{-9.2}$ to $10^{-8.7}bar$ with oxygen fugacity of about $10^{-32.1}$ to $10^{-29.8}bar$. Late main Cu-bearing ore mineralization in the vein occurs at about $250^{\circ}C$ which corresponds to sulfur fugacity from about $10^{-13.5}$ to $10^{-11.7}bar$ with oxygen fugacity of about $10^{-38.4}$ to $10^{-35.2}bar$. The late Ag-bearing telluride mineralization in the Hanae hydrothermal system occurs at about $200^{\circ}C$ which corresponds to minium Tellirium fugacity value of about $10^{-18}bar$ with sulfur fugacity of about $10^{-14.0}$ to $10^{-10.9}bar$.
Stannite is mainly found in hypothermal ore deposits, whereas mawsonite and stannoidite occur characteristically with bornite and chalcopyrite in subvolcanic (xenothermal) ore deposits. Mawsonite always shows the replacement on the rims of stannoidite grains or along the grain boundaries of stannoidite, bornite and chalcopyrite. In the Tada mine, Japan, the following mineral assemblages of the Cu-Fe-Sn-S minerals were observed. 1) bornite-stannoidite; 2) stannoidite-chalcopyrite; 3) stannite-chalcopyrite; 4) bornite-mawsonite-stannoidite; 5) bornite-stannoidite-chalcopyrite; 6) mawsonite-stannoidite-chalcopyrite; 7) stannoidite-stannite-chalcopyrite; 8) bornite-mawsonite-stannoidite-chalcopyrite The heating and D.T.A. experimental results indicate that natural stannoidite containing 3 weight percent of zinc decomposes to bornite, stannite and chalcopyrite at above $500^{\circ}C$, whereas zinc-free synthetic stannoidite is stable up to $800^{\circ}C$. The stability temperature of zincian stannoidite depends on the zinc content. Mawsonite is stable at temperatures below $390^{\circ}C$ and decomposed to stannoidite, bornite and chalcopyrite above it. According to the sulfur fugacity determination by the electrum tarnish method the univariant assemblage of mawsonite, bornite, stannoidite and chalcopyrite requires a higher sulfur fugacity than that of bornite, stannoidite and chalcopyrite assemblage.
Lee, Hyon Koo;Kim, Sang Jung;Yun, Hyesu;Song, Young Su;Kim, In-Soo
Economic and Environmental Geology
/
v.26
no.3
/
pp.311-325
/
1993
The Ohto and Tohyun copper mine which are located 4 km southeast of Euiseong, Gyeongsangbukdo, Republic of Korea show various common geologic and mineralogic features. Both copper deposits are of hydrothermal-vein types, and associated with fracture system developed during formation of the Geumseong-san caldera in late Cretaceous age. According to structures and mineral assemblages, the mineralization processes have progressed in four stages: three hypogene mineralization stages and one supergene stage. Three hypogene stages are 1) stage I forming $N5{\sim}20^{\circ}E$ veins in the Ohto mine, 2) stage II building $N5^{\circ}W{\sim}N5^{\circ}E$ veins in the Tohyun mine, and 3) stage ill bringing $N80^{\circ}E$ veins which crosscut veins of the stage II. The vein ores consist mainly of pyrite, arsenopyrite, galena and chalcopyrite, minor or trace amounts of magnetite, hematite, pyrrhotite, stannite, bournonite, boulangerite, stibnite, galenobismutite, native bismuth, marcasite, geothite and malachite. The main gangue minerals are quartz and calcite. Wallrock is altered by sericitization, chloritization, pyritization, carbonitization and argillization. Arsenic and copper contents in arsenopyrite increase from stage I to stage III (from 31.28 to 33043 atom.% As) and (from 0.04 to 0040 atom.% Co). Going from stage I to stage III Fe and Mn contents in sphalerite decreases from 12.56 to 0.44 wt.% and from 0.24 to 0.01 wt.%, respectively. The compositional data of arsenopyrite in the early stage I indicate a temperature of $420{\sim}365^{\circ}C$ and sulfur fugacity of $10^{-6.5}{\sim}10^{-8.3}$ atm. Chalcopyrite and pyrrhotite assemblage suggest that Middle stage I was deposited at below $334^{\circ}C$. The compositional data of arsenopyrite in early stage II suggest a temperature range of $425{\sim}390^{\circ}C$ and sulfur fugacity codition of $10^{-6.4}{\sim}10^{-7.3}$ atm. Based on fluid inclusion the Middle stage II was regarded as to be deposited at $420{\sim}337^{\circ}C$ (Chi et al., 1989). Referring composition of sphalerite and stannite middle-late stage II seem to be deposited around $246^{\circ}C$ and $10^{-16.5}$ atm. sulfur fugacity. The ${\delta}^{34}S$ values of sulfide minerals in the Stage I, II, III range from 4.9 to 7.6%0 and indicate igneous ore fluid origin. Based on differences in mineral assemblages, chemical composition and chemical environments of Ohto and Tohyun mine its mineralization are considered to be formed at diffent mineralization ages and by different ore fluids.
The Wooseok deposit in Jecheon belongs to the Hwanggangri Mineralized Distict of the northeastern Ogcheon Metamorphic Belt. Its geology consists mostly of limestone of the Choseon Supergroup and the Cretaceous Muamsa granite intruded at the eastern area of the deposit. The deposit shows vertical occurrence of skarn and hydrothermal vein ores with W-Mo-Fe and Cu-Pb-Zn mineralization and skarn is developed only at lower levels of the deposit. Skarn minerals are replaced or cut by ore minerals in paragenetic sequence of magnetite-hematite, molybdenite-scheelite-wollframite, and higher abundances of pyrrhotite-chalcopyrite-pyrite-sphalerite-galena. Garnet has chemical compositions of $Ad_{65.9-97.8}Gr_{0.3-32.0}Pyr_{0.9-3.0}$, corresponding to andradite series, and pyroxene compositions are $Hd_{4.5-49.7}Di_{42.3-93.9}Jo_{0.5-7.9}$, prevailing in diopside compositions, both of which suggest oxidized conditions of skarnization. On the FeS-MnS-CdS ternary diagram, FeS contents of sphalerite in vein ores decrease with increasing MnS contents from bottom to top levels, possibly relating to W mineralization in deep and Pb-Zn mineralization in shallow level. Sulfur isotope values of sulfide minerals range from 5.1 to 6.8‰, reflecting magmatic sulfur affected by host rocks. W-Mo skarn and Pb-Zn vein mineralization in the Wooseok deposit were established by spatio-temporal variation of decreasing temperature and oxygen fugacity with increasing sulfur fugacity from bottom to top levels.
The Hadong-Sancheong Proterozoic anorthosite complex occurs in the southwestern region of the Ryongnam massif. The geology of the area mainly consists of metamorphic rocks of the Jirisan metamorphic complex as basement rocks, charnockite, and the Hadong-Sancheong anorthosite, which are intruded by the Mesozoic igneous rocks. Hadong-Sancheong anorthosite complex is divided into the Sancheong anorthosite and the Hadong anorthosite which occur at north-southern and south area of the Jurassic syenite, respectively. The Hadong Fe-Ti-bearing dike-like ore bodies developed intermittently in the Hadong anorthosite with north-south direction and extend about 14 km. The Hadong Fe-Ti-bearing ore bodies consist mainly of magnetite and ilmenite with rutile, titanite, and minor amounts of sulfides(pyrrhotite, pyrite, chalcopyrite and sphalerite). The Hadong Fe-Ti-bearing ore bodies show a paragenetic sequence of magnetite-ilmenite ${\rightarrow}$ magnetite-ilmenite-pyrrhotite ${\rightarrow}$ ilmenite-pyrrhotite-rutile-titanite(and/or pyrite) ${\rightarrow}$ sulfides. Equilibrium thermodynamic interpretation of the mineral paragenesis and assemblages indicate that early Fe-Ti-bearing ore mineralization in the ore bodies occurs at about $700^{\circ}C$ which corresponds to oxygen fugacity of about $10^{-11.8}{\sim}10^{-17.2}$ atm with the decrease tendency of sulfur fugacity to about $10^0$ atm as equilibrium of $Fe_3O_4-FeS$. The change of ore mineral assemblages from Fe-Ti-bearing minerals to sulfides in late ore mineralization of the ore bodies indicates that oxygen fugacity would have slightly decreased to ${\geq}10^{-20.2}$ atm and increased sulfur fugacity to ${\geq}10^0$ atm.
The Donjin deposits which is located in the Chinan Basin, are emplaced along $N10{\sim}40^{\circ}E$ trending fissure sets. So it is a sort of fissure-filling ore deposits. The results of paragenetic studies suggest two stages of hydrothermal mineralization; stage I: base-metal sulfides stage, stage II: late base-metal sulfides, electrum and silver-bearing sulfosalts stage. Au: Ag ratios of the electrums show that Ag atomic% are higher than that of Au. The temperature and salinity of the Donjin deposits estimated from fluid inclusion and sulfur isotope geothermometry are as follows; stage I: $240{\sim}315^{\circ}C$, 2.4~7.1 NaCl eq. wt.%, stage II: $190{\sim}268^{\circ}C$, 4.6~8.4 NaCl eq. wt.%. The estimated oxygen and sulfur fugacity during first stage mineralization, based on phase relation of associated minerals, range from $10^{-35}{\sim}10^{-39.7}$ atm. and$10^{-11}{\sim}10^{-13.4}$ atm., respectively. All these evidences suggest that the Dongjin deposits are polymetallic meso-epithermal ore deposits.
This paper describes the mode of occurrence and mineralogical properties of electrum from the Namseong Gold-Silver deposits, for the purpose of obtaining data on the characteristics of the ore deposits and the behavior of gold and silver during the mineralization. The gangue minerals are quartz, calcite, fluorite. Ore minerals are mainly composed of pyrite, sphalerite, chalcopyrite and galena with minor amount of argentite, electrum, pyrargyrite, native silver and unidenfied mineral(Cu-Fe-Ag-S series). Three stage of mineralization recognized are, from early to later, (I) pyrite-electrum stage (II) sphalerite-chalcopyrite-galena-argentite-electrum stage (III) sulfosalts stage. The filling temperature of fluid inclusions in quartz ranges from $225^{\circ}$ to $335^{\circ}C$. The value of sulfur fugacity estimated by means of electrum-tarnish method ranges from $10^{-11.5}$ to $10^{-14}$ atm. The compositional heterogeneity within a single grain with respect to gold concentration is common in the Namseong electrums Chemical composition of electrum ranges generally between 25~45 atom% Au. Its gold content decreases in late stages of mineralization.
The Sangra Pb-Zn deposit is located in the Gampo area. Most Cretaceous sedimentary rocks and Paleogene felsic intrusives in the study area have experienced intense propylitization. Such propylitization and Pb-Zn mineralization in ore veins are involved with the fluid having very low oxygen isotopic composition.Sulfurisotopic equilibrium temperature during the main Pb-Zn mineralization (late stage I) is calculated as $T=275^{\circ}{\sim}295^{\circ}C$. Oxygen and sulfur fugacity in late stage I fluid is estimated as $logfO_2=-34.4{\sim}-29.1$ and $logfS_2=-12.0{\sim}-8.2$ bars. It is inferred that the sulfur isotopic composition oflate stage I fluid was very high such as ${\delta}^{34}S_{{\Sigma}S}=+22.4{\sim}+22.5$‰ and the origin of sulfur was ocean water sulfate. Oxygen and hydrogen isotopic composition of water in ore-forming fluid was gradually increased and more abundantly affected by ocean water from early to late mineralization stage as follows; (late stage I) ${\delta}^{18}O_{H2O}=-7.2{\sim}-1.1$‰, ${\delta}D_{H2O}=-87{\sim}-84$‰, (stage II) ${\delta}^{18}O_{H2O}=-2.4{\sim}-0.8$‰, ${\delta}D_{H2O}=-39{\sim}-21$‰ (stage III) ${\delta}^{18}O_{H2O}=+0.7{\sim}+12.6$‰, ${\delta}D_{H_2O}=-49{\sim}-42$‰. The pH in ore-forming fluid was about 4.7 during late stage I and is thought to have been gradually decreased from late stage I to stage II mineralization.
A number of auriferous veins occur in the Precambrian metamorphic terrain from Chungju to Mugeug district. These gold (-silver) deposits consist mainly of the fissure-filling quartz veins intruding the Precambrian gneiss or schist and Jurassic or Cretaceous granite. These gold (-silver) deposits can be 'divided into two mineralization epochs, (a) gold-rich veins related to Daebo igneous activity, and (b) gold-silver veins related to Bulgugsa igneous activity. These two groups of ore deposits with different generation can be characterized by the mode of occurrence of ore vein and the ore mineral associations. The auriferous quartz veins of Taechang and Boryeon mines associated with late Jurassic igneous activity are massive in character, and show the simple mineral assemblages and low Ag/Au ratio in the ores, representing a single mineralization system. The ore minerals are predominantly quartz containing minor or trace amonts of pyrrhotite, sphalerite, galena, pyrite, chalcopyrite and electrum. Electrum is closely associated with pyrrhotite and has chemical compositions from 61.4 to 78.5 atomic % Au. Fluid inclusion data suggest that ore minerals were deposited at temperatures between 238 and $390^{\circ}C$ from $CO_2$-rich fluids. The gold and/or silver-bearing quartz veins of Geumwang mine related to middle Cretaceous igneous activity are characterized by the multistage history, diverse mineral assemblages with high Ag/Au ratio in the ores. The ores of Geumwang mine have two contrasting mineral assemblages (1) pyrite+galena+sphalerite+arsenopyrite+electrum+argentite, representing the higher gold mineralization, and (2) pyrite+chalcopyrite+ galena +sphalerite+ arsenopyrite+silver sulfosalts+ electrum+ native silver+argentite, representing the higher silver mineralization. Electrum is closely associated with pyrite and has chemical compositions from 11.2 to 49.9 atomic % Au. The depositional environment during the higher gold mineralization can be estimated as the range of both temperature and sulfur fugacity, T= $200{\sim}300^{\circ}C$, log f ($S_2$) = $10^{-10}{\sim}10^{-15}$. The higher silver mineralization may be interpreted to have formed a range of falling temperature ($150{\sim}200^{\circ}C$) and low sulfur fugacity($10^{-10}{\sim}10^{-15}$). These temperature data are consistent with homogenization temperatures of fluId inclusions in quartz. Thus, the gold veins related to the Daebo igneous activity may be formed by the environment of higher temperature and pressure than the gold-silver veins associated with the Bulgugsa igneous activity.
The study area of Nokjeonri in Yeongwol belongs to the Taebaeksan Mineralized District. Ca and Mg skarn and related ore mineralization are developed in the Pungchon formation along the contact with the Imog granite. Ca skarn hosted in limestone mostly comprises garnet and pyroxene. Mg skarn developed in dolomite includes olivine and serpentine. Magnetite-hematite and pyrrhotite(±scheelite)-pyritegalena-sphalerite were mineralized during early and late stage, respectively. Garnet compositions are dominated by andradite series in proximal area and grossular series in distal area. Pyroxene compositions correspond to diopside series in majority. These compositional changes indicate that the fluids varied from oxidizing condition to reducing condition due to increased reaction with carbonated wall rocks as the fluids moved from the granite to a distal place. Fe2O3 and MgO concentrations of magnetite are higher in Mg skarn than those in Ca skarn, while FeO shows opposite trend. The Zn/Fe ratio of sphalerite increases with distance from the Imog granite. The δ34S values of sulfide minerals are similar to those of the Imog granite, indicating magmatic origin in ore sulfur. Mineralization was established in the order of skarn, oxide and sulfide minerals with decreasing temperature and oxygen fugacity and increasing sulfur fugacity.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.