• Title/Summary/Keyword: sulfur free

Search Result 103, Processing Time 0.021 seconds

Predicting the Nutritional Value of Seafood Proteins as Measured by Newer In Vitro Model 2. C-PER and DC-PER of Marine Crustacea (수산식품 단백질 품질평가를 위한 새로운 모델 설정 2. 해산 갑각류의 C-PER 및 DC-PER)

  • RYU Hong-Soo;LEE Keun-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.3
    • /
    • pp.219-226
    • /
    • 1986
  • To confirm the application of a newer in vitro assays to determining the nutritional value of marine crustaceans (mainly shrimps and crabs), which have been considered to be highly nutritive depending on their levels of the essential amino acids and digestibility, their C-PERs and DC-PERs were determined and studied the factors influencing their in vitro results. Four species of seawater shrimps and 2 species of seawater crabs were used in this experiment. The in vitro digestibilities showed $83{\sim}86\%$ for raw shrimps and the trypsin indigestibile substrate content (TIS) was ranged from 1.32 to 3.33 mg/g solid expressed quantitatively as mg of purified soybean trypsin inhibitor. The smaller size of shrimps revealed a greater in vitro digestibility and a lower contents of TIS. It was noted that the in vitro digestibility of raw blue crab meat was around $85\%$ while boiled tenner crab meat showed $86\%$ or above, and the leg meat had the greatest in vitro digestibility in the various parts of crab meats. The poor in vitro digestibilities for shrimp's and crab's meat, compared with that of the other seafoods as noted in previous reports, suggest that the drop in pH, due to the change in their freshness during harvesting and frozen storage, resulted in underestimating their digestibilities using four-enzyme digestion technique. The lysine contents in all samples were higher than that of ANRC casein but they contained a slightly lower sulfur-containing amino acids than those in ANRC casein. But the other EAA, such as valine, tyrosine and phenylalanine, were found to be a half as little as that in casein and played a key-factor in calculation of C-PER or DC-PER. It was observed that the value of C-PER and DC-PER for all samples ranged from 2.1 to 2.4, and the predicted digestibilities showed $90\%$ or above in all samples. It was a different results from the fact that the animal proteins bear a higher values and predicted digestibilities than those of C-PER values. The lack of correlation between C-PER and DC-PER values is attributable to the fact that the lower content of valine, tyrosine and phenylalanine, and drop in pH owing to the changes of freshness in marine crustacea proteins. Therefore, if a newer in vitro digestion technique-which are taken into account the pH drop before digestion, TIS content and released free amino acids and/or peptides-developed, C-PER assays can provide more advantages in assessing the protein nutritional value of marine crustacea than any other in vitro assays.

  • PDF

Biochemical Characteristics for the Cofactor Free Mutant of Yeast Homocysteine Catalyzing Enzyme, Cystathionine ${\beta}$-Synthase (조효소를 함유하지 않는 효모의 Homocysteine 분해효소, Cystathionine ${\beta}$-Synthase의 생화학적 특성)

  • Jhee, Kwang-Hwan;Cho, Hyun-Nam;Yang, Seun-Ah;Lee, In-Seun
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.3
    • /
    • pp.196-202
    • /
    • 2007
  • Mutations in the cystathionine ${\beta}$-synthase (CBS) gene cause homocystinuria, the most frequent inherited disorder in sulfur metabolism. CBS is the unique enzyme using both heme and pyridoxal 5-phosphate (PLP) for activity. Among the reported 140 mutations, one of the most common disease-causing alterations in human CBS is G307S mutation. To investigate the pathogenic mechanism of G307S by spectroscopic methods, we engineered the full length and the truncated G247S mutation of yeast CBS that is corresponding mutation to human G307S. Yeast CBS does not contain heme and thus gives a merit to study the spectroscopic properties. The UV-visible spectra of the purified full length and the truncated G247S yeast CBSs showed the total absence of PLP in the protein. The absence of PLP in G247S mutation was also confirmed by the PLP-cyanide adduct formation experiment, which was conducted by the incubation of the purified enzyme with KCN. The adducts were detected using a circular dichroism (CD) and a spectrofluorimeter. Radio isotope activity assay of full length and truncated G247S proteins also gave no activity. Our yeast G247S mutation data suggested that G307S might make the distortion of the active site so that cofactor PLP and substrate can not fit inside the active site. Our yeast CBS study addressed the reason why the G307S mutation in human CBS makes the enzyme inactive that consequently leads to severe clinical phenotype.

Microbiological and Enzymological Studies on the Flavor Components of Sea Food Pickles (젓갈등속(等屬)의 정미성분(呈味成分)에 관(關)한 미생물학적(微生物學的) 및 효소학적(酵素學的) 연구(硏究))

  • Lee, Ke-Ho
    • Applied Biological Chemistry
    • /
    • v.11
    • /
    • pp.1-27
    • /
    • 1969
  • More than thirty kinds of sea food pickles have been eaten in Korea. Out of these salted yellow tail pickle, salted clam pickle, salted oyster pickle, and salted cuttlefish pickle were employed for the analysis of their components, identification of main fermenting microbes, and determination of enzyme characteristics concerned. Also studied was the effect of enzymic action of microbes, which are concerned with the fermenting of pickles, on the production of flavorous 5'-mononucleotides and amino acids. The results are summarized as follows: 1. Microflora observed in the pickles are: (a) Total count of viable cells after 1-2 months of pickling was found to be $10^7$ and that after 6 months decreased to $10^4$. (b) Microbial occurence in the early stage of pickling was observed to be 10-20% Micrococcus spp., 10-20% Brevibacterium spp., 0-30% Sarcina spp., 20-30% Leuconostoc spp., ca 30% Bacillus spp., 0-10% Pseudomonas spp., 0-10% Flavobacterium spp., and 0-20% yeast. (c) Following the early stage of pickling, mainly halophilic bacteria such as Bacillus subtilis, Leuconostoc mesenteroides, Pediococcus halophilus and Sarcina litoralis, were found to exhibit an effect on the fermentation of pickle and their enzyme activities were in direct concern in fermentation of pickles. (d) Among the bacteria participating in the fermentation, Sarcina litoralis 8-14 and 8-16 strains were in need of high nutritional requirement and the former was grown only in the presence of purine, pyrimidine and cystine and the latter purine, pyrimidine and glutamic acid. 2. Enzyme characteristics studied in relation to the raw materials and the concerned microbes isolated are as follows: (a) A small amount of protease was found in the raw materials and 30-60% decrease in protease activity was demonstrated at 7% salt concentration. (b) Protease activity of halophilic bacteria, Bacillus subtilis 7-6, 11-1, 3-6 and 9-4 strains, in the complete media decreased by 10-30% at the 7% salt concentration and that of Sarcina litoralis 8-14 and 8-16 strains decreased by 10-20%. (c) Proteins in the raw materials were found to be hydrolyzed to yield free amino acids by protease in the fermenting microbes. (d) No accumulation of flavorous 5'-mononucleotides was demonstrated because RNA-depolymerase in the raw materials and the pickles tended to decompose RNA into nucleoside and phosphoric acid. (e) The enzyme produced in Bacillus subtilis 3-6 strain isolated from the salted clam pickles, was ascertained to be 5'-phosphodiesterase because of its ability to decompose RNA and thus accumulating 5'-mononucleotide. (f) It was demonstrated that the activity of phosphodiesterase in Bacillus subtilis 3-6 strain was enhanced by some components in the corn steep liquor and salted clam pickle. The enzyme activity was found to decrease by 10-30% and 40-60% at the salt concentration of 10% and 20%, respectively. 3. Quantitative data for free amino acids in the pickles are as follows: (a) Amounts of acidic amino acids such as glutamic and aspartic acids in salted clam pickle, were observed to be 2-10 times other pickles and it is considered that the abundance in these amino acids may contribute significantly to the specific flavor of this food. (b) Large amounts of basic amino acids such as arginine and histidine were found to occur in salted yellow tail pickle. (c) It is much interesting that in the salted cuttlefish pickle the contents of sulfur-containing amino acids were exceedingly high compared with those of others: cystine was found to be 17-130 times and methionine, 7-19 times. (d) In the salted oyster pickle a high content of some essential amino acids such as lysine, threonine, isoleucine and leucine, was demonstrated and a specific flavor of the pickle was ascribed to the sweet amino acids. Contents of alanine and glycine in the salted oyster pickle were 4 and 3-14 times as much as those of the others respectively. 4. Analytical data for 5'-mononucleotides in the pickles are as follows: (a) 5'-Adenylic acid and 3'-adenylic acid were found in large amounts in the salted yellow tail pickle and 5'-inosinic acid in lesser amount. (b) 5'-Adenylic acid, especially 3'-adenylic acid predominated in amount in the salted oyster pickle over that in the other pickles. (c) The salted cuttlefish pickle was found to contain only 5'-adenylic acid and 3'-adenylic acid. It has become evident from the above fact that clam and the invertebrate lack of adenylic deaminase and contain high content of adenylic acid. Thus, they were demonstrated to be the AMP-type. (d) 5'-Inosinic acid was contained in the salted yellow tail pickle in a significant concentration, and it might be considered to be IMP-type. 5. Comparative data for flavor with regard to the flavorous amino acids and the contents of 5'-mononucleotides are: (a) A specific flavor of salted yellow tail pickle was ascribed to the abundance in glutamic acid and aspartic acid, and to the existence of a small amount of flavorous 5'-inosinic acid. The combined effect of these components was belived to exhibit a synergistic action in producing a specific fiavor to the pickle. (b) A specific flavor of salted clam pickle has been demonstrated to be attributable to the richness in glutamic acid and aspartic acid rather than to that of 5'-mononucleotides.

  • PDF