• Title/Summary/Keyword: sulfur cycle

Search Result 97, Processing Time 0.028 seconds

Dimethylsulfide (DMS) in Seawater and the Overlying Atmosphere of the Masan Bay (해수 및 대기 중 DMS의 분석 : 마산만을 중심으로)

  • 김기현;오재룡;강성현;이수형;이강웅
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.495-504
    • /
    • 1996
  • The concentrations of dimethylsulfide (DMS) were determined from both seawater and the overlying atmosphere from a station located in the Masan Bay area during a ten-day field campaign period of January 1996. The resulting data were also used to derive saturation ratios (SR) as well as sea-to-air fluxes of DMS. The concentrations and fluxes of DMS for both reservoirs varied extensively over two to three orders of magnitude: DMS in air and seawater were measured at 9 to 4,300 pptv (mean: 600 $\pm$ 1, 170, N=18) and at 0.24 to 10 nM (4.0 $\pm$ 3.4, N=13), respectively, while its fluxes were found from 0.02 to 23 mol $m^{-2} day^{-1} (3.1 \pm 6.8, N=11)$. A comparative analysis between our data and previously reported ones indicate that its atmospheric concentrations are abnormalously high, but its seawater counterparts are slightly lower than expected. In light of high pollution levels of organic-rich materials in and the associated high biological productivity of the study area, the sea-to-air-fluxes derived are notably low relative to those values typically reported from the coastal areas. These complicated features of DMS distributions/fluxes in the study site indicate that the near-by port- based anthropogenic activities from various industrial plants strongly interfere with natural processes leading to the production and release of DMS. It was however striking to find out relatively strong signals of diel cycle in its saturation ratios, concentration gradients between seawater and atmosphere, and the associated fluxes. Although it is yet difficult to provide meaningful explanations for the observed phenomena, the existence of clear diel cycle in some DMS-related parameters suggests that the natural processes may nonetheless exert important controls on the regional cycling of atmospheric sulfur species, of particular DMS.

  • PDF

EFFECT OF CYCLIC STRAIN RATE AND SULFIDES ON ENVIRONMENTALLY ASSISTED CRACKING BEHAVIORS OF SA508 GR. 1A LOW ALLOY STEEL IN DEOXYGENATED WATER AT 310℃

  • Jang, Hun;Cho, Hyun-Chul;Jang, Chang-Heui;Kim, Tae-Soon;Moon, Chan-Kook
    • Nuclear Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.225-232
    • /
    • 2008
  • To understand the effect of the cyclic strain rate on the environmentally assisted cracking behaviors of SA508 Gr.1a low alloy steel in deoxygenated water at $310^{\circ}C$, the fatigue surface and a sectioned area of specimens were observed after low cycle fatigue tests. On the fatigue surface of the specimen tested at a strain rate of 0.008 %/s, unclear ductile striations and a blunt crack tip were observed. Therefore, metal dissolution could be the main cracking mechanism of the material at this strain rate. On the other hand, on the fatigue surfaces of the specimens tested at strain rates of 0.04 and 0.4 %/s, brittle cracks and flat facets, which are evidences of the hydrogen induced cracking, were observed. In addition, a tendency of linkage between the main crack and the micro-cracks was observed on the sectioned area. Therefore, at higher strain rates, the main cracking mechanism could be hydrogen induced cracking. Additionally, evidence of the dissolved MnS inclusions was observed on the fatigue surface from energy dispersive x-ray spectrometer analyses. Thus, despite the low sulfur content of the test material, the sulfides seem to contribute to environmentally assisted cracking of SA508 Gr.1a low alloy steel in deoxygenated water at $310^{\circ}C$.

A Study on Technology Status and Project of Hydrogen Production from Coal Gasificiation (석탄가스화를 이용한 수소생산 기술현황 및 프로젝트 분석)

  • Seungmo Ko;Hochang Jang
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • Coal gasification is a process of incomplete coal combustion to produce a syngas composed of hydrogen and carbon monoxide. It is one of methods to utilize coal cleanly because the process does not emits nitrogen oxides or sulfur oxides and particulate matters. In addition, chemicals can be produced using syngas. Coal gasification is classified as IGCC (Integrated Gasification Combined Cycle), Plasma coal gasification and UCG (Underground Coal Gasification). Recently, WGS (Water Gas Shift) reactor and carbon capture system have been combined to gasifier to produce hydrogen from coal. In this study, the coal gasification and method of hydrogen production from syngas was summarized, and the hydrogen production from coal gasification project was investigated.

The Utilization of Waste Seashell for High Temperature Desulfurization

  • Kim, Young-Sik;Hong, Sung-Chul
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.2
    • /
    • pp.136-140
    • /
    • 2010
  • The integrated gasification combined cycle (IGCC) is one of the most promising proposed processes for advanced electric power generation that is likely to replace conventional coal combustion. This emerging technology will not only improve considerably the thermal efficiency but also reduce or eliminate the environmentally adverse effects normally associated with coal combustion. The IGCC process gasifies coal under reducing conditions with essentially all the sulfur existing in the form of hydrogen sulfide ($H_2S$) in the product fuel gas. The need to remove $H_2S$ from coal derived fuel gases is a significant concern which stems from stringent government regulations and also, from a technical point of view and a need to protect turbines from corrosion. The waste seashells were used for the removal of hydrogen sulfide from a hot gas stream. The sulphidation of waste seashells with $H_2S$ was studied in a thermogravimetric analyzer at temperature between $600^{\circ}C$ and $800^{\circ}C$. The desulfurization performance of the waste seashell sorbents was experimentally tested in a fixed bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that preparation procedure and technique, the type and the amount of seashell, and the size of the seashell affects the $H_2S$ removal capacity of the sorbents. The pore structure of fresh and sulfided seashell sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electronmicroscopy.

Investigation of Fuel Filter Contamination for Turboprop Engine (터보프롭 엔진 연료필터 오염 원인 탐구)

  • Lee, Hyeongwon;Jo, Hana;Lee, Chungryeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.6
    • /
    • pp.87-94
    • /
    • 2019
  • This paper contains the process of investigating the cause of fuel filter contamination of P&WC's PT6A-67A engine. An outline of the fuel filter contamination and configuration of the fuel supply line are specified. The analytical methods were classified into fuel component analysis and solid sediment analysis(EDX, TGA, optical microscope). In summary, the sulfur was detected from fuel tank sealant as a major contamination component. As a follow-up, P&WC and the Agency for Defense Development will conduct engine fuel filter cycle checks and fuel tank cleaning for engine operation.

Effects of Lentinus edodes-powder on Serum Homocysteine Level and Homocysteine-induced Replicative Senescence (혈청호모시스테인 농도와 호모시스테인 유도성-세포 세네센스에 대한 표고버섯분말의 영향)

  • Park, Yeong-Chul;Kim, Min-Hee;Kim, Jong-Bong
    • Toxicological Research
    • /
    • v.23 no.4
    • /
    • pp.311-319
    • /
    • 2007
  • Elevated blood levels of homocysteine (a sulfur-containing amino acid) have been linked to increased risk of cerebrovascular disease including Alzheimer's disease. A recent study suggests that elevated homocysteine levels may lead to replicative senescence in vitro called 'permanent arrest of cell cycle' caused by oxidative stress. In this study, serum homocysteine level in rat was reduced by Lentinus edodes-powder diet, resulting in the reduced level of oxidative stress in rat brain. In addition, homocysteine-induced replicative senescence treated with or without Lentinus edodes-powder was analyzed by population doubling in vitro. The Lentinus edodes-powder induced a increased number of population doubling in primary neuron cell isolated from rat-cerebral cortex. This indicates that Lentinus edodes-powder would delay a homocysteine-induced aging of neuron cells in brain, showing a possible role in preventing cerebrovascular diseases including Alzheimer's disease.

A Study on the Effects of Multi-Walled Carbon Nanotubes on Electrochemical Performances of Li/S Secondary Batteries (Multi-Walled Carbon Nanotubes가 Li/S 이차전지의 전기화학적 성능에 미치는 영향)

  • Song, Min-Sang;Han, Sang-Cheol;Kim, Hyun-Seok;Kim, Jin-Ho;Kang, Yong-Mook;Ahn, Hyo-Jun;Lee, Jal-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.2
    • /
    • pp.122-130
    • /
    • 2003
  • Li/S 이차전지의 유황양극의 전기전도도를 향상시키고 유황이 충방전시 전해질내로 용출되는 것을 방지하기 위하여 multi-walled carbon nanotubes (MWNTs)를 thermal CVD 방법으로 제조하여 유황양극에 첨가하였다. 실험결과 첫 사이클에서 Li/S 이차전지의 방전용량은 485mAh/g-sulfur이었고, MWNT 첨가 이후에 유황양극의 cycle life와 rate-capability가 향상되는 것을 관찰할 수 있었다. 그러므로 MWNT는 polysulfide를 유황양극에 흡착시키는 동시에 good electric conductor로서 작용한다는 것을 알 수 있었다.

Influence of Microbial Activity on the Long-Term Alteration of Compacted Bentonite/Metal Chip Blocks

  • Lee, Seung Yeop;Lee, Jae-Kwang;Kwon, Jang-Soon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.469-477
    • /
    • 2021
  • Safe storage of spent nuclear fuel in deep underground repositories necessitates an understanding of the long-term alteration of metal canisters and buffer materials. A small-scale laboratory alteration test was performed on metal (Cu or Fe) chips embedded in compacted bentonite blocks placed in anaerobic water for 1 year. Lactate, sulfate, and bacteria were separately added to the water to promote biochemical reactions in the system. The bentonite blocks immersed in the water were dismantled after 1 year, showing that their alteration was insignificant. However, the Cu chip exhibited some microscopic etch pits on its surface, wherein a slight sulfur component was detected. Overall, the Fe chip was more corroded than the Cu chip under the same conditions. The secondary phase of the Fe chip was locally found as carbonate materials, such as siderite (FeCO3) and calcite ((Ca, Fe)CO3). These secondary products can imply that the local carbonate occurrence on the Fe chip may be initiated and developed by an evolution (alteration) of bentonite and a diffusive provision of biogenic CO2 gas. These laboratory scale results suggest that the actual long-term alteration of metal canisters/bentonite blocks in the engineered barrier could be possible by microbial activities.

The Study on Bunsen Reaction Process for Iodine-Sulfur Thermochemical Hydrogen Production (요오드-황 열화학 수소 제조를 위한 분젠 반응 공정 연구)

  • Kang, Young-Han;Ryu, Jae-Chun;Park, Chu-Sik;Hwang, Gab-Jin;Lee, Sang-Ho;Bae, Ki-Kwang;Kim, Young-Ho
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.410-416
    • /
    • 2006
  • For highly efficient operation of a Bunsen process section in an iodine-sulfur thermochemical hydrogen production cycle using nuclear heat, the process characteristics of $H_2SO_4-HI-H_2-O-I_2$ mixture system for separating into two liquid phases ($H_2SO_4$-rich phase and $HI_x$-rich phase) and the distribution of $H_2O$ to each phase were investigated.The experiments for process variables were carried out in the temperature range, from 298 to 353 K, and in the $H_2SO_4/HI/H_2O/I_2$ molar ratio of 1/2/14~20/0.5~8.0. As the results, for the $SO_2-I_2-H_2O$ Bunsen reaction system, the ranges between the starting point and the saturation point for two liquid phases separation were determined by calculation. The best result for the minimization of impurities (HI and $I_2$ in $H_2SO_4$ phase and $H_2SO_4$ in $HI_x$ phase) in each phase was obtained in an optimum condition with the highest temperature of 353 K and the highest $I_2$ molar composition. In this condition, the $HI/H_2SO_4$ molar ratio in the $H_2SO_4$-rich phase and the $H_2SO_4/HI_x$ molar ratio in the $HI_x$-rich phase were 0.024 and 0.028, respectively. For the distribution of $H_2O$ to each phase, it is appeared that the affinity between $HI_x$ and $H_2O$ was more superior to that between $H_2SO_4$ and $H_2O$. The affinity between $HI_x$ and $H_2O$ was decreased with increasing temperature but increased with increasing $I_2$ molar composition.

The Reactivity for the SO2 Reduction with CO and H2 over Sn-Zr Based Catalysts (Sn-Zr계 촉매 상에서 CO와 H2를 이용한 SO2 환원 반응특성)

  • Han, Gi Bo;Park, No-Kuk;Ryu, Si Ok;Lee, Tae Jin
    • Korean Chemical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.356-362
    • /
    • 2006
  • The $SO_2$ reduction using CO and $H_2$ over Sn-Zr based catalysts was performed in this study. Sn-Zr based catalysts with Sn/Zr molar ratio (0/1, 1/4, 1/1, 2/1, 3/1, 1/0) were prepared by the precipitation and co-precipitation method. The effect of the temperature on the reaction characteristics of the $SO_2$ reduction with a reducing agent such as $H_2$ and CO was investigated under the conditions of space velocity of $10,000ml/g_{-cat.}h$, $([CO(or\;H_2)]/[SO_2])$ of 2.0. As a result, the activity of Sn-Zr based catalysts were higher than $SnO_2$ and $ZrO_2$. The reactivity for the $SO_2$ reduction with CO was higher than that with $H_2$, and sulfur yield in the $SO_2$ reduction by $H_2$ was higher than that by CO. The reactivity for the $SO_2$ reduction with $H_2$ was increased with the reaction temperature regardless of Sn-Zr based catalyst with a Sn/Zr molar ratio. $SnO_2-ZrO_2$ (Sn/Zr=1/4) had highest activity at $550^{\circ}C$, in the $SO_2$ reduction with $H_2$ and $SO_2$ conversion of 94.4% and sulfur yield of 66.4% were obtained at $550^{\circ}C$. On the other hand, in the $SO_2$ reduction by CO, the reactivity was decreased with the increase over $325^{\circ}C$. At the optimal temperature of $325^{\circ}C$, $SO_2$ conversion and sulfur yield were about 100% and 99.5%, respectively, in the $SO_2$ reduction over $SnO_2-ZrO_2$ (Sn/Zr=3/1). Also, the $SO_2$ reduction using syngas with $CO/H_2$ ratio over $SnO_2-ZrO_2$ (Sn/Zr=2/1) was performed in order to investigate the application possibility of the simulated coal gas as the reductant in DSRP. As a result, the reactivity of the $SO_2$ reduction using syngas with $CO/H_2$ ratio was increased with increasing the CO content of syngas. Therefore, it could be known that DSRP using the simulated coal gas over Sn-Zr based catalyst is possible to be realized in IGCC system