• Title/Summary/Keyword: sulfonated poly ether ether ketone

Search Result 38, Processing Time 0.027 seconds

Fabrication of Hydrocarbon Polymer Electrolyte Composite Membrane Incorporated with Pt Nanopartle for PEMFC and Its Characteristics (Pt 나노 입자가 도입된 연료전지용 탄화수소계 고분자 전해질 복합막의 제조 및 특성)

  • LEE, HONGKI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.3
    • /
    • pp.246-251
    • /
    • 2017
  • To fabricate a hydrocarbon polymer electrolyte composite membrane incorporated with Pt nanoparticle, the polymer electrolyte membrane made of a sulfonated-fluorinated hydrophilic-hydrophobic block copolymer (SFBC) and sulfonated poly (ether ether ketone) (SPEEK) blend in the wight ratio of 1 : 1 was synthesized, and a simple drying process was used in order to incorporate Pt nanoparticle into the SFBC/SPEEK film by reducing platinum (II) bis (acetylacetonate), Pt $(acac)_2$. The distribution of the Pt nanoparticles was observed by transmission electron microscopy (TEM), and mechanical and thermal properties were tested by universal testing machine (UTM) and thermogravimetry analyzer (TGA). Cation conductivity, ion exchange capacity (IEC) and I-V characteristics were estimated.

The Effect of Proton Conductivity of SPEEK Composite Membrane with Organic Compounds for DMFC

  • You, S.K.;Kim, H.J.;Shin, H.S.;Kim, J.S.;Choi, W.K.;Park, S.G.
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.167-172
    • /
    • 2009
  • Direct methanol fuel cells(DMFCs) are receiving significant attention in the portable power source and electric vehicular transportation because of its high energy efficiency as liquid fuel, low cost, and no requirement of fuel reforming process. In this study, we synthesized the Sulfonated poly(ether ether ketone) (SPEEK) to evaluate the possibility of use as a proton exchange membrane for DMFC. And poly(vinylidienedifluoride) (PVDF) was used to increase proton conductivity in SPEEK and simultaneously to prevent methanol transport through the cross linked membrane. Furthermore, in order to improve the electrical composite properties for DMFC applications.

Separation of Propylene/Propane using SPEEK-Ag+ Facilitated Transport Membrane (SPEEK-Ag+ 촉진 수송막을 이용한 Propylene/Propane의 분리)

  • Lee, Jung-In;Jang, Seong-Cheol;Choi, Do-Young;Bang, Jun-Ha;Kim, Hoon-Sik;Choi, Dae-Ki
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.164-169
    • /
    • 2008
  • In this study, the facilitated transport membranes, poly (ether ether)ketone (SPEEK)-Ag salts layers on top of polycarbonate supports membrane, were prepared and tested for the separation of propylene/propane. SPEEK was synthesised using PEEK and $H_2SO_4$. Experiments were porformed at room temperature and feed pressures up to 30 psig. The SPEEK-Ag salt membranes showed good selectivity for propane over propylene. With increasing the concentration of SPEEK in MeOH, 5~20 wt%, the thickness of SPEEK membrane on the polycarbonate increased. The selectivity and permeance of SPEKK-Ag membrane for propylene/propane were changed by membrane thickness and concentration of Ag salts.

Electrospun $SiO_2$ membrane using covalently cross-linked SPEEK/HPA by impregnation for high temperature PEMFC

  • Na, Heesoo;Hwang, Hyungkwon;Lee, Chanmin;Shul, Yonggun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.85.2-85.2
    • /
    • 2010
  • There is widespread effort to develop polymer membranes in place of Nafion for high temperature polymer electrolyte membrane fuel cell(PEMFC). In our study, SiO2 membranes are arranged by electrospinning method. For impregnation solution, the modified sulfonated poly(ether ether ketone)(SPEEK) polymer is prepared from sulfonation, sulfochlorination, partial reduction and lithiation reaction. The modified polymer is cross-linked with 1,4-diiodobetane in NMP solvent and then blended with Heteropoly acid(HPA). The characterization of membranes is confimed by FT-IR, Thermogravimetry(TGA), water uptake test and single cell performance test for PEMFC, etc. The composite membrane shows satisfactory thermal and mechanical properties. Beside, The membrane exhibits good ion exchange capacity and high proton conductivity. As a result, The composite membrane is promising as an alternative membrane in high temperature PEMFC.

  • PDF

Study on the Degradation of MEA Using Sulfonated Poly(ether ether ketone) Membrane in Proton Exchange Membrane Fuel Cells (고분자 전해질 연료전지에서 sPEEK 막을 이용한 전극과 막 합체(MEA)의 열화에 관한 연구)

  • Lee, Hye-Ri;Lee, Se-Hoon;Hwang, Byung-Chan;Na, Il-Chai;Lee, Jung-Hun;Oh, Sung-June;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.305-309
    • /
    • 2016
  • Recently, there are many efforts focused on development of more economical non-fluorinated membranes for PEMFCs (Proton Exchange Membrane Fuel Cells). In this study, to test the durability of sPEEK MEA (Membrane and Electrode Assembly), ADT (Accelerated Degradation Test) of MEA degradation was done at the condition that membrane and electrode were degraded simultaneously. Before and after degradation, I-V polarization curve, hydrogen crossover, electrochemical surface area, membrane resistance and charge transfer resistance were measured. Although the permeability of hydrogen through sPEEK membrane was low, sPEEK membrane was weaker to radical evolved at low humidity and OCV condition than fluorinated membrane such as Nafion. Performance after MEA degradation for 144 hours and 271 hours were reduced by 15% and 65%, respectively. It was showed that the main cause of rapid decrease of performance after 144 hours was shorting due to Pt/C particles in the pinholes.

Increased Chemical Durability by Annealing of SPEEK Membrane for Polymer Electrolyte Fuel Cells (고분자 전해질 연료전지용 SPEEK 막의 어닐링에 의한 화학적 내구성 향상)

  • MI-HWA LEE;DONGGEUN YOO;HYE-RI LEE;IL-CHAI NA;KWONPIL PARK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.673-681
    • /
    • 2023
  • Hydrocarbon-based polymer membranes to replace perfluorinated polymer membranes are being continuously researched. However, hydrocarbon-based membranes have a problem in that they are less durable than fluorine-based membranes. In this study, we sought to compare the annealing effect to improve the durability of sulfonated poly(ether ether ketone) (SPEEK). After membranes formation, thermogravimetric analysis and tensile strength were measured to compare changes in membranes properties due to annealing. After manufacturing the membrane and electrode assembly (MEA), the initial performance and chemical durability was compared with unit cell operation. During the 24-hour annealing process, the strength increased due to the increase in-S-O-S-crosslinking, and the sulfonic acid group decreased, leading to a decrease in I-V performance. By annealing, the hydrogen permeability was reduced to less than 1/10 of that of the nafion membrane, and as a result, open circuit voltage (OCV) and durability was improved. The SPEEK membranes annealed for 24 hours showed higher durability than the nafion 211 membranes of the same thickness.

Electrochemical Characteristics of all solid supercapacitor based on DAAQ(1,5-diaminoanthraquinone) and SPEEK(sulfonated polyether ether ketone) (DAAQ와 SPEEK를 이용한 전고상 슈퍼커패시터의 전기화학적 특성)

  • Kim, Jin-Yong;Kim, Hong-Il;Kim, Han-Joo;Park, Soo-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.371-372
    • /
    • 2005
  • Supercapacitors are promising devices for delivering high power density. Digital communications, electric vehicles and other devices that require electrical energy at high power levels in relatively short pulses have prompted considerable research on supercapacitors. In recent years, solid electrolytes have been investigated for supercapacitors. Solid electrolytes are advantageous over liquid electrolytes in respect of easy handling and reliability without electrolyte leakage. In this preliminary study, an electrochemical supercapacitor in all solid configuration has been fabricated using CNF-DAAQ and poly-vinylidenefluoride(PVdF). A new type of Supercapacitor was constructed by using carbon nanofibers(CNFs) and DAAQ(l,5-diaminoanthraquinone) monomer. DAAQ was deposited on the carbon nanofibers by chemical polymerization with $(NH_4)_2S_2O_8$ as oxidant in the 0.1M $H_2SO_4$. Dried SPEEK powder was mixed with N-methyl pyrrolidone to make 10 wt.% solution in an ultrasonic bath, the slurry was cast over a glass substrate heated to $70^{\circ}C$ for solvent evaporation. And then we used solid electrolyte of SPEEK. The unit cell consist of DAAQ-CNF/electrolyte/Pt. From the analysis, it is clear that surface of carbon nanofibers was quite uniformly coated with DAAQ. The performance characteristics of the supercapacitors have been evaluated using Cyclic Voltammetry.

  • PDF

Characteristics of CL-SPEEK/HPA Membrane Electrodes with Pt-Ni and Pt-Co Electrocatalysts for Water Electrolysis (전극 촉매 Pt-Ni 및 Pt-Co를 이용한 수전해용 공유가교 CL-SPEEK/HPA 막전극의 특성)

  • Woo, Je-Young;Lee, Kwang-Mun;Jee, Bong-Chul;Chung, Jang-Hoon;Moon, Sang-Bong;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.1
    • /
    • pp.26-34
    • /
    • 2010
  • The electrocatalystic prperties of Pt-Co and Pt-Ni with heteropolyacids (HPAs) entrapped in covalently cross-linked sulfonated poly(ether ether ketone) (CL-SPEEK)/HPA membranes were investigated for water electrolysis. The HP As, including molybdophosphoric acid (MoPA), and tungstophosphoric acid (TPA) were both used as membrane additives and electrocatalysts. The membrane electrode assembly (MEA) was prepared by a nonequilibrium impregnation-reduction (I-R) method. $Pt(NH_3)_4Cl_2$, $NiCl_2$ and $CoCl_2$ as electrocatalytic materials and $NaBH_4$ as reducing agent were used. I order to enhance electrocatalytic activity, the catalyst layer prepared above was electrodeposited (Dep) with HP A. Surface morphologies and physico-chemical properties of MEA were investigated by means of SEM, EDX and XRD. The electrocatalytic properties of composite membranes such as the cell voltage and coulombic charge in CV were in the order of magnitude: CL-SPEEK/MoPA40 (wt%) > CL-SPEEK/TPA30 > Nafion117. In the optimum cell applications for water electrolysis, the cell voltage of Pt/CL-SPEEK-MoPA40/Pt-Co (Dep-MoPA) and Pt/CL-SPEEK-TPA30/Pt-Co (Dep-TPA) was 1.75 Vat $80^{\circ}C$ and $1\;A/cm^2$ and voltage efficiency was 87.1%. Also, the observed activity of Pt-Co (84:16 atomic ratio by EDX) is a little higher than that of Pt-Ni (86: 14). The current density peak of electrodeposited electrodes were better a little than those of unactivated electrodes based on the same membranes.