• Title/Summary/Keyword: sulfate solvents

Search Result 34, Processing Time 0.023 seconds

Studies on the Biological Active Substance produced by a Strain of Streptomyces sp. Part I. Isolation and Biological Characterization of the Substance (Streptomyces속 균주가 생성한 물질의 생물활성에 관한 연구 제 I보 생성물질의 분이및 그 생화학적성질)

  • 송방호;서정훈
    • Microbiology and Biotechnology Letters
    • /
    • v.3 no.2
    • /
    • pp.63-68
    • /
    • 1975
  • A biological active substance was isolated from the cultured medium of Streptomyces sp. and its biochemical characteristics were investigated. Isolation process of the substance was as follows; the pH of filterate of the cultured medium was adjusted to 3.0 with N-hydrochloric acid and saturated with sodium chloride, then chloroform was added to this filterate in one fifth portions and stirred vigorously. After extracting the active substance with chloroform in 3 stages, the chloroform layer combined and evaporatea after dehydrating with sodium sulfate. The substance was found to be to be toxic to various fresh water fishes; the lethal dose for an average size Pseudorasbora parva T. et. S. was 50ug per ml. In the acidic condition, the toxicity of the substance remained fora long time, while in the alkaline state, the toxicity was decreased very fast. This substance was found to be stable to organic solvents, but labile to heat treatment. The maximal revival time of Pseudorasbora parva T. et. S. was about 20 minutes in 25 ug/ml of the substance solution.

  • PDF

A Simple Method for the Preparation of Crude Gintonin from Ginseng Root, Stem, and Leaf

  • Pyo, Mi-Kyung;Choi, Sun-Hye;Shin, Tae-Joon;Hwang, Sung-Hee;Lee, Byung-Hwan;Kang, Ji-Yeon;Kim, Hyeon-Joong;Lee, Soo-Han;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.35 no.2
    • /
    • pp.209-218
    • /
    • 2011
  • Ginseng has been used as a general tonic agent to invigorate the human body as an adaptogenic agent. In a previous report, we have shown that ginseng contains a novel glycolipoprotein called gintonin. The main function of gintonin is to transiently enhance intracellular free $Ca^{2+}$ $[Ca^{2+}]_i$ levels in animal cells. The previous method for gintonin isolation included multiple steps using organic solvents. In the present report, we developed a simple method for the preparation of crude gintonin from ginseng root as well as stem and leaf, which produced a higher yield of gintonin than the previous one. The yield of gintonin was 0.20%, 0.29%, and 0.81% from ginseng root, stem, and leaf, respectively. The apparent molecular weight of gintonin isolated from stem and leaf through sodium dodecyl sulfate polyacrylamide gel electrophoresis was almost same as that from root but the compositions of amino acids, carbohydrates or lipids differed slightly between them. We also examined the effects of crude gintonin from ginseng root, stem, and leaf on endogenous $Ca^{2+}$-activated $Cl^-$ channel (CaCC) activity of Xenopus oocytes through mobilization of $[Ca^{2+}]_i$. We found that the order of potency for the activation of CaCC was ginseng root > stem > leaf. The $ED_{50}$ was $1.4{\pm}1.4$, $4.5{\pm}5.9$, and $3.9{\pm}1.1$ mg/mL for root, stem and leaf, respectively. In the present study, we demonstrated for the first time that in addition to ginseng root, ginseng stem and leaf also contain gintonin. Gintonin can be prepared from a simple method with higher yield of gintonin from ginseng root, stem, and leaf. Finally, these results demonstrate the possibility that ginseng stem and leaf could also be utilized for ginstonin preparation after a simple procedure, rather than being discarded.

A Study on Persulfate Oxidation to Remove Chlorinated Solvents (TCE/PCE) (과황산(persulfate) 산화반응을 이용한 염소계 화합물(TCE, PCE) 분해에 관한 연구)

  • Song, Kyoung-Ho;Do, Si-Hyun;Lee, Hong-Kyun;Jo, Young-Hoon;Kong, Sung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.549-556
    • /
    • 2009
  • In situ chemical oxidations (ISCO) are technologies for destruction of many contaminants in soil and groundwater, and persulfate has been recently studied as an alternative ISCO oxidant. Trichloroethylene (TCE) and tetrachloroethylene (PCE) were chosen for target organic compounds. The objective of this study is to demonstrate the influence of initial pH (3, 6, 9, 12), oxidant concentrations (0.01, 0.05, 0.1, 0.3, 0.5 M), and contaminants concentrations (10, 30, 50, 70, 100 mg/L) on TCE/PCE degradation by persulfate oxidation. The maximum TCE/PCE degradation occurred at pH 3, and the removal efficiencies with this pH condition were 93.2 and 89.3%, respectively. The minimum TCE/PCE degradation occurred at pH 12, and the removal efficiencies were 55.0 and 31.2%, respectively. This indicated that degradation of TCE/PCE decreased with increasing the initial pH of solution. Degradation of TCE/PCE increased with increasing the concentration of persulfate and with decreasing the concentration of contaminants (TCE/PCE). The optimum conditions for TCE/PCE degradation were pH 3, 0.5 M of persulfate solution, and 10 mg/L of contaminant concentration. At these conditions, the first-order rate constants ($k_{obs}$) for TCE and PCE were 1.04 and 1.31 $h^{-1}$, respectively.

Characterization and Purification of the Bacteriocin Produced by Bacillus licheniformis Isolated from Soybean Sauce (간장에서 분리한 Bacillus licheniformis가 생산하는 박테리오신의 특성 및 정제)

  • Jung, Sung-Sub;Choi, Jung-I;Joo, Woo-Hong;Suh, Hyun-Hyo;Na, Ae-Sil;Cho, Yong-Kweon;Moon, Ja-Young;Ha, Kwon-Chul;Paik, Do-Hyeon;Kang, Dae-Ook
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.994-1002
    • /
    • 2009
  • A bacteriocin-producing bacterium identified as Bacillus licheniformis was isolated from soybean sauce. Antibacterial activity was confirmed by paper disc diffusion method, using Micrococcus luteus as a test organism. The bacteriocin also showed antibacterial activities against Bacillus sphaericus, Lactobacillus bulgaricus, Lactobacillus planiarum, Paenibacillus polymyxa, and Pediococcus dextrinicus. Optimal culture conditions for the production of bacteriocin was attained by growing the cells in an MRS medium at a pH of 6.5~ 7.0 and a temperature of 37$^\circ$C for 36$\sim$48 hr. Solvents such as chloroform, ethanol, acetone, and acetonitrile had little effect on bacteriocin activity. However, about 50% of bacteriocin activity diminished with treatment of methanol and isopropanol at the final concentration of 50% at 25$^\circ$C for 1 hr. It was stable against a pH variation range from 3.0 and 7.0, but the activity reduced to 50% at a pH range from 9.0 to 11.0. It's activity was not affected by heat treatment at 100$^\circ$C for 30 min and 50% of activity was retained after heat treatment at 100$^\circ$C for 60 min, showing high thermostability. The bacteriocin was purified to a homogeneity through ammonium sulfate precipitation, SP-Sepharose ion-exchange chromatography, and reverse-phase high-performance liquid chromatography (HPLC). The entire purification protocol led to a 75-fold increase in specific activity and a 13.5% yield of bacteriocin activity. The molecular weight of purified bacteriocin was estimated to be about 2.5 kDa by tricine-SDS-PAGE.