• Title/Summary/Keyword: successive convex approximation

Search Result 4, Processing Time 0.019 seconds

Joint Antenna Selection and Multicast Precoding in Spatial Modulation Systems

  • Wei Liu;Xinxin Ma;Haoting Yan;Zhongnian Li;Shouyin Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.3204-3217
    • /
    • 2023
  • In this paper, the downlink of the multicast based spatial modulation systems is investigated. Specifically, physical layer multicasting is introduced to increase the number of access users and to improve the communication rate of the spatial modulation system in which only single radio frequency chain is activated in each transmission. To minimize the bit error rate (BER) of the multicast based spatial modulation system, a joint optimizing algorithm of antenna selection and multicast precoding is proposed. Firstly, the joint optimization is transformed into a mixed-integer non-linear program based on single-stage reformulation. Then, a novel iterative algorithm based on the idea of branch and bound is proposed to obtain the quasioptimal solution. Furthermore, in order to balance the performance and time complexity, a low-complexity deflation algorithm based on the successive convex approximation is proposed which can obtain a sub-optimal solution. Finally, numerical results are showed that the convergence of our proposed iterative algorithm is between 10 and 15 iterations and the signal-to-noise-ratio (SNR) of the iterative algorithm is 1-2dB lower than the exhaustive search based algorithm under the same BER accuracy conditions.

Secure Transmission Scheme Based on the Artificial Noise in D2D-Enabled Full-Duplex Cellular Networks

  • Chen, Yajun;Yi, Ming;Zhong, Zhou;Ma, Keming;Huang, Kaizhi;Ji, Xinsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.4923-4939
    • /
    • 2019
  • In this paper, a secure transmission scheme based on the artificial noise is proposed for D2D communications underlaying the full-duplex cellular network, and a secure power allocation scheme to maximize the overall secrecy rate of both the cellular user and D2D transmitter node is presented. Firstly, the full-duplex base station transmits the artificial noise to guarantee the secure communications when it receives signals of cellular uplinks. Under this secure framework, it is found that improving the transmission power of the cellular user or the D2D transmitter node will degrade the secrecy rate of the other, although will improve itself secrecy rate obviously. Hence, a secure power allocation scheme to maximize the overall secrecy rate is presented subject to the security requirement of the cellular user. However, the original power optimization problem is non-convex. To efficiently solve it, we recast the original problem into a convex program problem by utilizing the proper relaxation and the successive convex approximation algorithm. Simulation results evaluate the effectiveness of the proposed scheme.

NUMERICAL SIMULATION OF PLASTIC FLOW BY FINITE ELEMENT LIMIT ANALYSIS

  • Hoon-Huh;Yang, Wei-H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1992.03a
    • /
    • pp.159-176
    • /
    • 1992
  • Limit analysis has been rendered versatile in many problems such as structural problems and metal forming problems. In metal forming analysis, a slip-line method and an upper bound method approach to limit solutions is considered as the most challenging areas. In the present work, a general algorithm for limit solutions of plastic flow is developed with the use of finite element limit analysis. The algorithm deals with a generalized Holder inequality, a duality theorem, and a combined smoothing and successive approximation in addition to a general procedure for finite element analysis. The algorithm is robust such that from any initial trial solution, the first iteration falls into a convex set which contains the exact solution(s) of the problem. The idea of the algorithm for limit solution is extended from rigid/perfectly-plastic materials to work-hardening materials by the nature of the limit formulation, which is also robust with numerically stable convergence and highly efficient computing time.

  • PDF

Optimal Power Allocation for NOMA-based Cellular Two-Way Relaying

  • Guosheng, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.202-215
    • /
    • 2023
  • This paper proposes a non-orthogonal multiple access (NOMA) based low-complexity relaying approach for multiuser cellular two-way relay channels (CTWRCs). In the proposed scheme, the relay detects the signal using successive interference cancellation (SIC) and re-generates the transmit signal with zero-forcing (ZF) transmit precoding. The achievable data rates of the NOMA-based multiuser two-way relaying (TWR) approach is analyzed. We further study the power allocation among different data streams to maximize the weighted sum-rate (WSR). We re-form the resultant non-convex problem into a standard monotonic program. Then, we design a polyblock outer approximation algorithm to sovle the WSR problem.The proposed optimal power allocation algorithm converges fast and it is shown that the NOMA-TWR-OPA scheme outperforms a NOMA benchmark scheme and conventional TWR schemes.