• Title/Summary/Keyword: successful intelligence

Search Result 178, Processing Time 0.026 seconds

Artificial Intelligence Techniques for Predicting Online Peer-to-Peer(P2P) Loan Default (인공지능기법을 이용한 온라인 P2P 대출거래의 채무불이행 예측에 관한 실증연구)

  • Bae, Jae Kwon;Lee, Seung Yeon;Seo, Hee Jin
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.3
    • /
    • pp.207-224
    • /
    • 2018
  • In this article, an empirical study was conducted by using public dataset from Lending Club Corporation, the largest online peer-to-peer (P2P) lending in the world. We explore significant predictor variables related to P2P lending default that housing situation, length of employment, average current balance, debt-to-income ratio, loan amount, loan purpose, interest rate, public records, number of finance trades, total credit/credit limit, number of delinquent accounts, number of mortgage accounts, and number of bank card accounts are significant factors to loan funded successful on Lending Club platform. We developed online P2P lending default prediction models using discriminant analysis, logistic regression, neural networks, and decision trees (i.e., CART and C5.0) in order to predict P2P loan default. To verify the feasibility and effectiveness of P2P lending default prediction models, borrower loan data and credit data used in this study. Empirical results indicated that neural networks outperforms other classifiers such as discriminant analysis, logistic regression, CART, and C5.0. Neural networks always outperforms other classifiers in P2P loan default prediction.

Investigating the Characteristics of Academia-Industrial Cooperation-based Patents for their Long-term Use (지속적 활용이 가능한 산학협력 특허 특성 분석)

  • Park, Sang-Young;Choi, Youngjae;Lee, Sungjoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.568-578
    • /
    • 2021
  • Patents that are research results from industry-university cooperation (IUC) are a source of innovation, and play an important role in economic growth, such as technology transfer and commercialization. For this reason, there are many efforts to revitalize IUC, but in general, company patents are achievements that can be commercialized, rather than research achievements, so not all patents are used for business, even after their creation as the outcome of IUC. Therefore, this research supports the design of measures in which IUC can ultimately be linked to successful utilization of patents by identifying the purposes of IUC, even after it has been successfully promoted, and patents have been filed as a result. To this end, first, the patents registered for industry-academia cooperation in the United States are collected, and second, a predictive model is designed, with unexpired and expired patents predicted using machine learning techniques. The final identified patents are intended to derive available factors in terms of marketability and technicality. This study is expected to help predict the utilization of unexpired and expired patents, and is expected to contribute to setting goals for research results from technical cooperation between corporate and university officials planning early IUC.

A theoretical foundation study for the promotion of a social and emotional competencies of children (초등학생들의 사회·정서적 능력 함양을 위한 이론적 토대 연구)

  • Lee, In Jae
    • The Journal of Korean Philosophical History
    • /
    • no.25
    • /
    • pp.7-40
    • /
    • 2009
  • The aim of this paper is to establish the theoretical foundation on "the integrative study of the character education for the promotion of social and emotional competencies of children.". Based on the social and emotional learning(SEL), this paper is tried to find out the effective ways to develop children's good character. According to SEL, social and emotional competence is the ability to understand, manage, and express the social and emotional aspects of one's life in ways that enable the successful management of life tasks such as learning, forming relationships, solving everyday problems, and adapting to the complex demands of growth and development. And it is also the process of acquiring and effectively applying the knowledge, attitudes, and skills necessary to recognize and manage emotions. Five key competencies such as self-awareness, social awareness, responsible decision making, self-management, relationship skills are taught, practiced, and reinforced through SEL programming. Both the social and emotional learning movement and the character education share in common the idea that much of human character can be modified for the better through learning. While character educators engage in developing civic virtue and moral character in our youth for more compassionate and responsible society, SEL educators engage in educating for a safe, secure, caring society. To effectively teach social and emotional competencies, the teachers themselves must embrace a teaching and learning philosophy that models the attitudes, feelings, and behaviors we aim to teach.

A Study on Consumer Emotion for Social Robot Appearance Design: Focusing on Multidimensional Scaling (MDS) and Cluster Analysis (소셜 로봇 외형 디자인에 대한 소비자 감성에 관한 연구: 다차원 척도법 (MDS)과 군집분석을 중심으로)

  • Seong-Hun Yu;Ji-Chan Yun;Junsik Lee;Do-Hyung Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.397-412
    • /
    • 2023
  • In order for social robots to take root in human life, it is important to consider the technical implementation of social robots and human psychology toward social robots. This study aimed to derive potential social robot clusters based on the emotions consumers feel about social robot appearance design, and to identify and compare important design characteristics and emotional differences of each cluster. In our study, we established a social robot emotion framework to measure and evaluate the emotions consumers feel about social robots, and evaluated the emotions of social robot designs based on the semantic differential method, an kansei engineering approach. We classified 30 social robots into 4 clusters by conducting a multidimensional scaling method and K-means cluster analysis based on the emotion evaluation results, confirmed the characteristics of design elements for each cluster, and conducted a comparative analysis on consumer emotions. We proposed a strategic direction for successful social robot design and development from a human-centered perspective based on the design characteristics and emotional differences derived for each cluster.

Developing a New Algorithm for Conversational Agent to Detect Recognition Error and Neologism Meaning: Utilizing Korean Syllable-based Word Similarity (대화형 에이전트 인식오류 및 신조어 탐지를 위한 알고리즘 개발: 한글 음절 분리 기반의 단어 유사도 활용)

  • Jung-Won Lee;Il Im
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.267-286
    • /
    • 2023
  • The conversational agents such as AI speakers utilize voice conversation for human-computer interaction. Voice recognition errors often occur in conversational situations. Recognition errors in user utterance records can be categorized into two types. The first type is misrecognition errors, where the agent fails to recognize the user's speech entirely. The second type is misinterpretation errors, where the user's speech is recognized and services are provided, but the interpretation differs from the user's intention. Among these, misinterpretation errors require separate error detection as they are recorded as successful service interactions. In this study, various text separation methods were applied to detect misinterpretation. For each of these text separation methods, the similarity of consecutive speech pairs using word embedding and document embedding techniques, which convert words and documents into vectors. This approach goes beyond simple word-based similarity calculation to explore a new method for detecting misinterpretation errors. The research method involved utilizing real user utterance records to train and develop a detection model by applying patterns of misinterpretation error causes. The results revealed that the most significant analysis result was obtained through initial consonant extraction for detecting misinterpretation errors caused by the use of unregistered neologisms. Through comparison with other separation methods, different error types could be observed. This study has two main implications. First, for misinterpretation errors that are difficult to detect due to lack of recognition, the study proposed diverse text separation methods and found a novel method that improved performance remarkably. Second, if this is applied to conversational agents or voice recognition services requiring neologism detection, patterns of errors occurring from the voice recognition stage can be specified. The study proposed and verified that even if not categorized as errors, services can be provided according to user-desired results.

A Study on the Success Model for the Establishment of Big Data System in Public Institutions (공공기관 빅데이터 시스템 구축을 위한 성공모형에 관한 연구)

  • Lee, Gwang-Su;Kwon, Jungin
    • Journal of Digital Convergence
    • /
    • v.20 no.1
    • /
    • pp.129-139
    • /
    • 2022
  • This study aims to identify which factors affect successful big data system construction, identify the relationship between the factors, and identify the success model and success factors necessary for public institutions to build big data systems. Therefore, the preceding and related studies related to this study were reviewed, and success factors for the establishment of a big data system were derived based on this. As a research method, a survey was conducted on users of institutions that have established or planned to build a big data system, and a structural equation (AMOS) was conducted to verify the impact relationship between success factors. As a result of the analysis, organizational support factors, development support factors, user support factors, information quality, service quality, system quality, use, and net benefit were derived as success factors for building big data systems, and a success model was presented. This can be seen as significant and academic contributions in that it is the first study of the success model for building an information system reflecting big data characteristics, and it is expected that this study will be used as basic data for building a big data system in public institutions in the future.

Accuracy of posteroanterior cephalogram landmarks and measurements identification using a cascaded convolutional neural network algorithm: A multicenter study

  • Sung-Hoon Han;Jisup Lim;Jun-Sik Kim;Jin-Hyoung Cho;Mihee Hong;Minji Kim;Su-Jung Kim;Yoon-Ji Kim;Young Ho Kim;Sung-Hoon Lim;Sang Jin Sung;Kyung-Hwa Kang;Seung-Hak Baek;Sung-Kwon Choi;Namkug Kim
    • The korean journal of orthodontics
    • /
    • v.54 no.1
    • /
    • pp.48-58
    • /
    • 2024
  • Objective: To quantify the effects of midline-related landmark identification on midline deviation measurements in posteroanterior (PA) cephalograms using a cascaded convolutional neural network (CNN). Methods: A total of 2,903 PA cephalogram images obtained from 9 university hospitals were divided into training, internal validation, and test sets (n = 2,150, 376, and 377). As the gold standard, 2 orthodontic professors marked the bilateral landmarks, including the frontozygomatic suture point and latero-orbitale (LO), and the midline landmarks, including the crista galli, anterior nasal spine (ANS), upper dental midpoint (UDM), lower dental midpoint (LDM), and menton (Me). For the test, Examiner-1 and Examiner-2 (3-year and 1-year orthodontic residents) and the Cascaded-CNN models marked the landmarks. After point-to-point errors of landmark identification, the successful detection rate (SDR) and distance and direction of the midline landmark deviation from the midsagittal line (ANS-mid, UDM-mid, LDM-mid, and Me-mid) were measured, and statistical analysis was performed. Results: The cascaded-CNN algorithm showed a clinically acceptable level of point-to-point error (1.26 mm vs. 1.57 mm in Examiner-1 and 1.75 mm in Examiner-2). The average SDR within the 2 mm range was 83.2%, with high accuracy at the LO (right, 96.9%; left, 97.1%), and UDM (96.9%). The absolute measurement errors were less than 1 mm for ANS-mid, UDM-mid, and LDM-mid compared with the gold standard. Conclusions: The cascaded-CNN model may be considered an effective tool for the auto-identification of midline landmarks and quantification of midline deviation in PA cephalograms of adult patients, regardless of variations in the image acquisition method.

Introduction of AI digital textbooks in mathematics: Elementary school teachers' perceptions, needs, and challenges (수학 AI 디지털교과서의 도입: 초등학교 교사가 바라본 인식, 요구사항, 그리고 도전)

  • Kim, Somin;Lee, GiMa;Kim, Hee-jeong
    • Education of Primary School Mathematics
    • /
    • v.27 no.3
    • /
    • pp.199-226
    • /
    • 2024
  • In response to the era of transformation necessitating the introduction of Artificial Intelligence (AI) and digital technologies, educational innovation is undertaken with the implementation of AI digital textbooks in Mathematics, English, and Information subjects by 2025 in Korea. Within this context, this study analyzed the perceptions and needs of elementary school teachers regarding mathematics AI digital textbook. Based on a survey conducted in November 2023, involving 132 elementary school teachers across the country, the analysis revealed that the majority of elementary school teachers had a low perception of the introduction and need for mathematics AI digital textbooks. However, some recognized the potential for personalized learning and effective teaching support. Furthermore, among the core technologies of the AI digital textbook, teachers highly valued the necessity of learning diagnostics and teacher reconfiguration functions and had the most positive perception of their usefulness in math lessons, while their perception of interactivity was relatively low. These findings suggest the need for changing teachers' perceptions through professional development and information provision to ensure the successful adoption and use of mathematics AI digital textbooks. Specifically, providing concrete and practical ways to use the AI digital textbook, exploring alternatives to digital overload, and continuing development and research on core technologies.

Analysis of the scholastic capability of ChatGPT utilizing the Korean College Scholastic Ability Test (대학입시 수능시험을 평가 도구로 적용한 ChatGPT의 학업 능력 분석)

  • WEN HUILIN;Kim Jinhyuk;Han Kyonghee;Kim Shiho
    • Journal of Platform Technology
    • /
    • v.11 no.5
    • /
    • pp.72-83
    • /
    • 2023
  • ChatGPT, commercial launch in late 2022, has shown successful results in various professional exams, including US Bar Exam and the United States Medical Licensing Exam (USMLE), demonstrating its ability to pass qualifying exams in professional domains. However, further experimentation and analysis are required to assess ChatGPT's scholastic capability, such as logical inference and problem-solving skills. This study evaluated ChatGPT's scholastic performance utilizing the Korean College Scholastic Ability Test (KCSAT) subjects, including Korean, English, and Mathematics. The experimental results revealed that ChatGPT achieved a relatively high accuracy rate of 69% in the English exam but relatively lower rates of 34% and 19% in the Korean Language and Mathematics domains, respectively. Through analyzing the results of the Korean language exam, English exams, and TOPIK II, we evaluated ChatGPT's strengths and weaknesses in comprehension and logical inference abilities. Although ChatGPT, as a generative language model, can understand and respond to general Korean, English, and Mathematics problems, it is considered weak in tasks involving higher-level logical inference and complex mathematical problem-solving. This study might provide simple yet accurate and effective evaluation criteria for generative artificial intelligence performance assessment through the analysis of KCSAT scores.

  • PDF

Development of a Stock Trading System Using M & W Wave Patterns and Genetic Algorithms (M&W 파동 패턴과 유전자 알고리즘을 이용한 주식 매매 시스템 개발)

  • Yang, Hoonseok;Kim, Sunwoong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.63-83
    • /
    • 2019
  • Investors prefer to look for trading points based on the graph shown in the chart rather than complex analysis, such as corporate intrinsic value analysis and technical auxiliary index analysis. However, the pattern analysis technique is difficult and computerized less than the needs of users. In recent years, there have been many cases of studying stock price patterns using various machine learning techniques including neural networks in the field of artificial intelligence(AI). In particular, the development of IT technology has made it easier to analyze a huge number of chart data to find patterns that can predict stock prices. Although short-term forecasting power of prices has increased in terms of performance so far, long-term forecasting power is limited and is used in short-term trading rather than long-term investment. Other studies have focused on mechanically and accurately identifying patterns that were not recognized by past technology, but it can be vulnerable in practical areas because it is a separate matter whether the patterns found are suitable for trading. When they find a meaningful pattern, they find a point that matches the pattern. They then measure their performance after n days, assuming that they have bought at that point in time. Since this approach is to calculate virtual revenues, there can be many disparities with reality. The existing research method tries to find a pattern with stock price prediction power, but this study proposes to define the patterns first and to trade when the pattern with high success probability appears. The M & W wave pattern published by Merrill(1980) is simple because we can distinguish it by five turning points. Despite the report that some patterns have price predictability, there were no performance reports used in the actual market. The simplicity of a pattern consisting of five turning points has the advantage of reducing the cost of increasing pattern recognition accuracy. In this study, 16 patterns of up conversion and 16 patterns of down conversion are reclassified into ten groups so that they can be easily implemented by the system. Only one pattern with high success rate per group is selected for trading. Patterns that had a high probability of success in the past are likely to succeed in the future. So we trade when such a pattern occurs. It is a real situation because it is measured assuming that both the buy and sell have been executed. We tested three ways to calculate the turning point. The first method, the minimum change rate zig-zag method, removes price movements below a certain percentage and calculates the vertex. In the second method, high-low line zig-zag, the high price that meets the n-day high price line is calculated at the peak price, and the low price that meets the n-day low price line is calculated at the valley price. In the third method, the swing wave method, the high price in the center higher than n high prices on the left and right is calculated as the peak price. If the central low price is lower than the n low price on the left and right, it is calculated as valley price. The swing wave method was superior to the other methods in the test results. It is interpreted that the transaction after checking the completion of the pattern is more effective than the transaction in the unfinished state of the pattern. Genetic algorithms(GA) were the most suitable solution, although it was virtually impossible to find patterns with high success rates because the number of cases was too large in this simulation. We also performed the simulation using the Walk-forward Analysis(WFA) method, which tests the test section and the application section separately. So we were able to respond appropriately to market changes. In this study, we optimize the stock portfolio because there is a risk of over-optimized if we implement the variable optimality for each individual stock. Therefore, we selected the number of constituent stocks as 20 to increase the effect of diversified investment while avoiding optimization. We tested the KOSPI market by dividing it into six categories. In the results, the portfolio of small cap stock was the most successful and the high vol stock portfolio was the second best. This shows that patterns need to have some price volatility in order for patterns to be shaped, but volatility is not the best.