생성형 AI(Generative Artificial Intelligence)는 다양한 형태의 데이터를 생성하는 인공지능(Artificial Intelligence, AI) 기술이다. ChatGPT의 성공 이후, 생성형 AI 시장은 빠르게 성장하고 있다. 생성형 AI 기술 및 시장의 성장에 따라, 다양한 산업 분야에서는 이를 적극적으로 활용하고 있다. 본 논문에서는 생성형 AI의 현황과 활용사례에 대해 살펴보고, 생성형 AI의 전반적인 발전 방향에 대해 논의한다. 현재의 생성형 AI는 도메인 지식(Domain Knowledge)과 데이터를 기반으로 학습되어 특정 산업 분야에 특화된 수직적 AI(Vertical AI)의 형태로 발전되고 있다. 머지않은 미래에 생성형 AI는 학습되지 않은 사항도 사람처럼 스스로 판단하여 처리하는 일반 인공지능(범용 인공지능, Artificial General Intelligence, AGI)로 확장되어 다양한 환경에 더욱 유연하게 활용할 수 있을 것으로 기대한다.
전세계적 인지 잉여의 급격한 증가와 이를 이용한 소셜 저작의 성공적인 사례가 리눅스 프로젝트 및 위키피디아 등에서 나타나고 있다. 본 연구에서는 리눅스, 위키피디아 등의 소셜 저작 시스템을 분석하였으며 이를 기반으로 소셜 저작의 주요 성공 요소를 추출하였다. 더불어 페이스북 등의 소셜 미디어에서 적용되는 도구로서, 기존 리눅스와 위키피디아에서는 보이지 않았던 새로운 성공 요소가 존재하는 지 확인하였으며, 이를 기반으로 소셜 저작 시스템에 대한 개선 사항을 제시하였다. 소셜 저작 시스템에 요구되는 주요소들을 구체적으로 제시하여 향후 성공적 소셜 시스템 설계요인을 제시하였다.
Journal of Information Technology Applications and Management
/
제30권6호
/
pp.1-15
/
2023
With the advent of the Fourth Industrial Revolution, propelled by digital technology, we are transitioning into an era of hyperconnectivity, where everything and objects are becoming interconnected. A smart supply chain refers to a supply chain system where various sensors and RFID tags are attached to objects such as machinery and products used in the manufacturing and transportation of goods. These sensors and tags collect and analyze process data related to the products, providing meaningful information for operational use and decision-making in the supply chain. Before the spread of COVID-19, the fundamental principles of supply chain management were centered around 'cost minimization' and 'high efficiency.' A smart supply chain overcomes the linear delayed action-reaction processes of traditional supply chains by adopting real-time data for better decision-making based on information, providing greater transparency, and enabling enhanced collaboration across the entire supply chain. Therefore, in this study, a hierarchical model for building a smart supply chain was constructed to systematically derive the importance of key factors that should be strategically considered in the construction of a smart supply chain, based on the major factors identified in previous research. We applied AHP (Analytical Hierarchy Process) techniques to identify urgent improvement areas in smart SCM initiatives. The analysis results showed that the external supply chain integration is the most urgent area to be improved in smart SCM initiatives.
The purpose of this study was to compare the metacognitive abilities of low and middle-achievers in elementary school. Forty-nine low-and fifty middle-achieving 6th graders were selected from two elementary schools in Seoul. The tower of Hanoi with three discs was used to explore the children's abilities. The subjects were asked to move the three discs on a post to another post five times. All children's performances on the Hanoi tower were video taped. KEDI-WISC, an intelligence test was also used to see whether the children's intelligence scores affect their performances. The results showed that: (1) there was no significant difference between the two groups in the rate of success for the tasks; (2) low-achievers took more time to finish the tasks than middle-achievers, but the time difference decreased dramatically after the first trial; (3) no significant differences was found in self monitoring abilities, though the low-achievers needed more time to start monitoring themselves; (4) low-achievers had much more difficulty in representing the tasks; (5) the IQ scores of the middle-achievers were significantly higher than the low-achievers, but the IQ scores of low achievers were more scattered than those of middle-achievers; that is, IQ scores significantly affected the performance of the children.
This paper presents a study conducted with the aim of developing a model of tendering based on a technique of artificial intelligence by managing and controlling the factors of success or failure of construction projects through the evaluation of the process of invitation to tender. Aiming to solve this problem, analysis of the current environment based on SWOT (Strengths, Weaknesses, Opportunities, and Threats) is first carried out. Analysis was evaluated through a case study of the construction projects in Algeria, to bring about the internal and external factors which affect the process of invitation to tender related to the construction projects. This paper aims to develop a mean to identify threats-opportunities and strength-weaknesses related to the environment of various national construction projects, leading to the decision on whether to continue the project or not. Following a SWOT analysis, novel artificial intelligence models in forecasting the project status are proposed. The basic principal consists in interconnecting the different factors to model this phenomenon. An artificial neural network model is first proposed, followed by a model based on fuzzy logic. A third model resulting from the combination of the two previous ones is developed as a hybrid model. A simulation study is carried out to assess performance of the three models showing that the hybrid model is better suited in forecasting the construction project status than RNN (recurrent neural network) and FL (fuzzy logic) models.
Rrecently, companies have made great efforts to satisfy various needs and heightened expectations of customers, and the importance of customer center as customer contact department for customer relationship management is increasing. In the knowledge ecosystem, corporate customer centers are emerging as a new alternative to acquiring corporate competitiveness by increasing sales and increasing market share by improving marketing support activities and customer relationship management at customer contact points. As a result, the interest in the customer center has increased rapidly because it provides the opportunity to contact with the customer. In addition, in the era of the fourth industrial revolution, the customer center, which is a collection of information and communication technologies, has a big databased voice recognition technology to elaborate customer service, thereby enhancing customer satisfaction and contributing to marketing through continuous interaction with customers. Of course, we have the opportunity to transform into the frontline business intelligence front for customer knowledge. This study is a comparative case study on how the customer center of K Life Insurance that takes the lead in the customer center industry has successfully renewed and established their key information systems to improve customer services and reinforce marketing support competencies. Based on the above, this study will present factors affecting successful implementation and settlement of the customer service information systems of customer centers by independently analyzing two individual cases.
In recent years, using Deep Learning methods to apply for medical and biomedical image analysis has seen many advancements. In clinical, using Deep Learning-based approaches for cancer image analysis is one of the key applications for cancer detection and treatment. However, the scarcity and shortage of labeling images make the task of cancer detection and analysis difficult to reach high accuracy. In 2015, the Unet model was introduced and gained much attention from researchers in the field. The success of Unet model is the ability to produce high accuracy with very few input images. Since the development of Unet, there are many variants and modifications of Unet related architecture. This paper proposes a new approach of using Unet++ with pretrained EfficientNet as backbone architecture for breast tumor cell nuclei segmentation and uses the multi-organ transfer learning approach to segment nuclei of breast tumor cells. We attempt to experiment and evaluate the performance of the network on the MonuSeg training dataset and Triple Negative Breast Cancer (TNBC) testing dataset, both are Hematoxylin and Eosin (H & E)-stained images. The results have shown that EfficientUnet++ architecture and the multi-organ transfer learning approach had outperformed other techniques and produced notable accuracy for breast tumor cell nuclei segmentation.
The purpose of this study is to incorporate telemarketing processes to improve telemarketing performance. For this application, we have attempted to mix the model of machine learning to extract potential customers with personalisation techniques to derive recommended products from actual contact. Most of traditional recommendation systems were mainly in ways such as collaborative filtering, which predicts items with a high likelihood of future purchase, based on existing purchase transactions or preferences for products. But, under these systems, new users or items added to the system do not have sufficient information, and generally cause problems such as a cold start that can not obtain satisfactory recommendation items. Also, indiscriminate telemarketing attempts can backfire as they increase the dissatisfaction and fatigue of customers who do not want to be contacted. To this purpose, this study presented a multi-purpose hybrid recommendation algorithm to achieve two goals: to select customers with high possibility of contact, and to recommend products to selected customers. In addition, we used subscription data from telemarketing agency that handles insurance products to derive realistic applicability of the proposed recommendation system. Our proposed recommendation system would certainly solve the cold start and scarcity problem of existing recommendation algorithm by using contents information such as customer master information and telemarketing history. Also. the model could show excellent performance not only in terms of overall performance but also in terms of the recommendation success rate of the unpopular product.
영화 흥행의 예측이 필요한 시점은 영화 제작 전에 시나리오에 대한 투자를 결정하는 시점이다. 이런 요구에 따라 최근 인공지능 기반 시나리오 분석 서비스가 출시되었으나, 아직 그 알고리즘이 완벽하지는 않다. 본 연구의 목적은 인간의 뇌 작동 기작에 기반 하여, 영화 시나리오 흥행 예측 모형을 제시하는 것이다. 이를 위해 베버의 자극 반응 법칙과 뇌의 자극 기작 이론 등을 적용하여, 디즈니 애니메이션 흥행작의 시각, 청각, 인지적 자극의 타임 스펙트럼 패턴 도출을 시도한 결과는 다음과 같다. 첫째, 흥행작에서 나타난 뇌 자극의 빈도가 비 흥행작보다 약 1.79배가 많았다. 둘째로, 흥행작에서는 지각 자극 코드들이 타임 스펙트럼 상에 고른 분포를 보인 반면에 비흥행작에서는 집중 분포를 보였다. 셋째로, 흥행작에서는 인지적 부담이 큰 인지적 자극은 주로 단독적으로 등장한 반면에, 인지적 부담이 적은 시각적, 청각적 자극은 두 가지가 동시에 등장하였다.
Purpose - The study was AI as exploratory study on artificial intelligence (AI) shopping information services, to explore the possibility of a new business of the distribution industry. For research, we compare to IBM of consumer awareness surveys an AI shopping information service for retailing channel and target goods group. Finally, we present to service scenario for distribution service using AI. Research design, data, and methodology - First, to identify possible the success of the information service shopping using AI, AI technology for the consumer is very important for the acceptance of judgement. Therefore, we explored the possibility of AI information service for business as a shopping. The experimental data were used to interpret the meaning of the relevant literature and the IBM Institute of Business Value (IBV) Report 2015. This research is based on the use of a technical acceptance model (TAM) to determine whether the consumer would adopt the 'AI shopping information service' technology. Step 1 of the process assumes that the consumer adopts AI technology. In step 2, consumers find their preference channels and goods targeted at them as per their preferences. Finally Step 3, we present scenario for 'AI shopping information service' based on the results of Step 1 and 2. Results - Consumers have expressed their high interests in the new shopping information services, especially the on/off line distribution channels can use shopping information to increase the efficiency in provision of goods. Digital channel (such as SNS, online shopping etc.) is especially high value goods such as cars, furniture, and home appliances by displaying it to an appropriate product group. Conclusions - The study reveals the potential for the use of new business models such as 'AI shopping information service' by the distribution industry. We present seven scenario related AI application refer from IBM suggestion, and the findings would enable the distribution industry to approach target consumers with their products, especially high value goods. 'Shopping advisor' is considered to the most effective. In order to apply to the other field of the distribution industry business, which utilizes AI technology, it should be accompanied by additional empirical data analysis should be undertaken.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.