• Title/Summary/Keyword: subtropical climate zone

Search Result 17, Processing Time 0.03 seconds

Warming Trend of Coastal Waters of Korea during Recent 60 Years (1936-1995)

  • Kang Yong Q.
    • Fisheries and Aquatic Sciences
    • /
    • v.3 no.3_4
    • /
    • pp.173-179
    • /
    • 2000
  • Recent changes in the coastal sea surface temperatures (SST) in Korea are studied by time series analysis of daily SST data during the last 60 years (1936-1995) at 18 coastal observation stations of the National Fisheries Research and Development Institute. The climate of coastal SST in Korea are rapidly changing in recent years. General trends of coast SST changes in Korea are as follows. The annual averages of SST are increasing. The annual ranges of SST variation are decreasing. The winter SST are increasing while the summer SST have a decreasing tendency. Climatic changes in coastal SST in recent 30 years (1965-1995) are more pronounced than those in the last 60 years (1936-1995). The observed trend of coast SST implies that the climate in Korea shows a tendency to shift from temperate zone to subtropical zone.

  • PDF

Studies on Changes and Future Projections of Subtropical Climate Zones and Extreme Temperature Events over South Korea Using High Resolution Climate Change Scenario Based on PRIDE Model (남한 상세 기후변화 시나리오를 이용한 아열대 기후대 및 극한기온사상의 변화에 대한 연구)

  • Park, Chang Yong;Choi, Young Eun;Kwon, Young A;Kwon, Jae Il;Lee, Han Su
    • Journal of the Korean association of regional geographers
    • /
    • v.19 no.4
    • /
    • pp.600-614
    • /
    • 2013
  • This study aims to examine spatially-detailed changes and projection of subtropical climate zones based on the modified K$\ddot{o}$ppen-Trewartha's climate classification and extreme temperature indices using $1km{\times}1km$ high resolution RCP 4.5 and RCP 8.5 climate change scenarios based on PRIDE model over the Republic of Korea. Subtropical climate zones currently located along the southern coastal region. Future subtropical climate zones would be pushed northwards expanding to the western and the eastern coastal regions as well as some metropolitan areas. For both scenarios, the frequency of cold-related extreme temperatures projects to be reduced while the frequency of hot-related ones projects to be increased. Especially, hot days with $33^{\circ}C$ or higher temperature projects to occur more than 30 days over the most of regions except for some mountain areas with high altitudes during the period of 2070~2100. This study might provide essential information to make climate change adaptation processes be enhanced.

  • PDF

Water balance change at a transiting subtropical forest in Jeju Island

  • Kim, JiHyun;Jo, Kyungwoo;Kim, Jeongbin;Hong, Jinkyu;Jo, Sungsoo;Chun, Jung Hwa;Park, Chanwoo;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.99-99
    • /
    • 2022
  • Jeju island has a humid subtropical climate and this climate zone is expected to migrate northward toward the main land, Korea Peninsula, as temperature increases are accelerated. Vegetation type has been inevitably shifted along with the climatic change, having more subtropical species native in southeast Asia or even in Africa. With the forest composition shift, it becomes more important than ever to analyze the water balance of the forest wihth the ongoing as well as upcoming climate change. Here, we implemented the Ecosystem Demography Biosphere Model (ED2) by initializing the key variables using forest inventory data (diameter at breast height in 2012). Out of 10,000 parameter sets randomly generated from prior distribution distributions of each parameter (i.e., Monte-Carlo Method), we selected four behavioral parameter sets using remote-sensing data (LAI-MOD15A2H, GPP-MOD17A2H, and ET-MOD16A2, 8-days at 500-m during 2001-2005), and evaluated the performances using eddy-covariance carbon flux data (2012 Mar.-Sep. 30-min) and remote sensing data between 2006-2020. We simulated each of the four RCP scenarios (2.6, 4.5, 6.0, and 8.5) from four climate forcings (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, and MIROC5 from ISIMIP2b). Based on those 64 simulation sets, we estimate the changes in water balance resulting from the forest composition shift, and also uncertainty in the estimates and the sensitivity of the estimates to the parameters, climate forcings, and RCP scenarios.

  • PDF

Influence of Temperature and Humidity on Pregnancy Rate of Murrah Buffaloes under Subtropical Climate

  • Dash, Soumya;Chakravarty, A.K.;Sah, V.;Jamuna, V.;Behera, R.;Kashyap, N.;Deshmukh, B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.7
    • /
    • pp.943-950
    • /
    • 2015
  • Heat stress has adverse effects on fertility of dairy animals. Decline in fertility is linearly associated with an increase in combination of both temperature and humidity. The purpose of this study was to investigate the relationship between temperature humidity index (THI) and the pregnancy rate of Murrah buffaloes in a subtropical climate. The effects of genetic and non-genetic factors viz., sire, parity, period of calving and age group at first calving were found non-significant on pregnancy rate. The effect of THI was found significant (p<0.001) on pregnancy rate of Murrah buffaloes calved for first time and overall pregnancy rate. The threshold THI affecting the pregnancy rate was identified as THI 75. The months from October to March showed THI<75 and considered as non heat stress zone (NHSZ), while months from April to September were determined as heat stress zone (HSZ) with $THI{\geq}75$. The lowest overall pregnancy rate (0.25) was obtained in July with THI 80.9, while the highest overall pregnancy rate (0.59) was found in November with THI 66.1. May and June were identified as critical heat stress zone (CHSZ) within the HSZ with maximum decline (-7%) in pregnancy rate with per unit increase in THI. The highest overall pregnancy rate was estimated as 0.45 in NHSZ with THI value 56.7 to 73.2. The pregnancy rate was found to have declined to 0.28 in HSZ with THI 73.5 to 83.7. However, the lowest pregnancy rate was estimated as 0.27 in CHSZ with THI value 80.3 to 81.6.

Future Projection of Climatic Zone Shifts over Korean Peninsula under the RCP8.5 Scenario using High-definition Digital Agro-climate Maps (상세 전자기후지도를 이용한 미래 한반도 기후대 변화 전망)

  • Yun, Eun-jeong;Kim, Jin-Hee;Moon, Kyung Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.287-298
    • /
    • 2020
  • It is predicted that future climate warming will occur, and the subtropical climate zone currently confined to the south coast of Korea will gradually rise north. The shift of climate zone implies a change in area for cultivating crops. This study aimed to evaluate the current and future status of climate zones based on the high-resolution climate data of South Korea to prepare adaptation measures for cultivating crops under changing agricultural climate conditions. First, the climatic maps of South and North Korea were produced by using the high-resolution monthly maximum and minimum daily temperature and monthly cumulative precipitation produced during the past 30 years (1981-2010) covering South and North Korea. Then the climate zones of the Korean Peninsula were classified based on the Köppen climate classification. Second, the changes in climate zones were predicted by using the corrected monthly climate data of the Korean Peninsula (grid resolution 30-270m) based on the RCP8.5 scenario of the Korea Meteorological Administration. Köppen climate classification was applied based on the RCP8.5 scenario, the temperature and precipitation of the Korean Peninsula would continue to increase and the climate would become simpler. It was predicted that the temperate climate, appearing in the southern region of Korea, would be gradually expanded and the most of the Korean Peninsula, excluding some areas of Hamgkyeong and Pyeongan provinces in North Korea, would be classified as a temperate climate zone between 2071 and 2100. The subarctic climate would retreat to the north and the Korean Peninsula would become warmer and wetter in general.

Anhui Water Resource Situation and General Plan

  • Yiqun, Hou
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.67-73
    • /
    • 2007
  • Anhui Province, with a total north-south length of 570km and an east-west width of 450km and a total area of 139.6 thousand km2, accounts for 1.45% of China's total area. The landform and land feature of Anhui Province is diverse, and generally it can be divided into 5 natural regions: (1) Huaibei Plain; (2) Jianghuai Hillocks; (3) Dabie Mountains in the West of Anhui Province; (4) Yanjiang Plain, (5) Mountain Area of southern Anhui Province. Anhui Province is located in the transitional zone of warm and humid zone and subtropical zone, and its mean annual precipitation is 800-1800mm. The province, which has diverse climate, multiple land forms and many rivers and lakes, passes three basins (Huaihe River, Yangtze River and Xin'an River) and has large differences in the time distribution and regional distribution of water resource. Therefore, the development and usage conditions of the water resource in different regions are different.

  • PDF

The change of East Asian Monsoon to $CO_2$ increase

  • Kripalani, R.H.;Oh, J.H.;Chaudhari, H.S.
    • The Korean Journal of Quaternary Research
    • /
    • v.20 no.1 s.26
    • /
    • pp.9-27
    • /
    • 2006
  • The East Asian (China, Korea and Japan) summer monsoon precipitation and its variability are examined from the outputs of the 22 coupled climate models performing coordinated experiments leading to the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) following the multi-model ensemble (MME) technique. Results are based on averages of all the available models. The shape of the annual cycle with maximum during the summer monsoon period is simulated by the coupled climate models. However, models fail to simulate the minimum peak in July which is associated with northward shifts of the Meiyu-Changma-Baiu precipitation band. The MME precipitation pattern is able to capture the spatial distribution of rainfall associated with the location of the north Pacific subtropical high and the Meiyu-Changma-Baiu frontal zone. However precipitation over the east coast of China, Korea-Japan peninsular and the adjoining oceanic regions is underestimated. Future projections to the radiative forcing of doubled $CO_2$ scenario are examined. The MME reveals an increase in precipitation varying from 5 to 10 %, with an average of 7.8 % over the East Asian region at the time of $CO_2$ doubling. However the increases are statistically significant only over the Korea-Japan peninsula and the adjoining north China region. The increase in precipitation may be attributed to the projected intensification of the subtropical high, and thus the associated influx of moist air from the Pacific to inland. The projected changes in the amount of precipitation are directly proportional to the changes in the strength of the subtropical high. Further a possible increase in the length of the summer monsoon precipitation period from late spring through early autumn is suggested.

  • PDF

Hydrographic Structure Along 131.5°W in the Eastern Tropical Pacific in July 2003

  • Chang, Kyung-Il;Hwang, Sang-Chul;Hong, Chang-Su
    • Ocean and Polar Research
    • /
    • v.26 no.2
    • /
    • pp.299-309
    • /
    • 2004
  • Conductivity-temperature-depth (CTD) data obtained along a meridional section in the eastern tropical Pacific in July 2003 have been analyzed to identify various water masses, and to examine the hydrographic structure and zonal geostrophic currents in the upper 1000 m. Water mass analysis shows the existence of subtropical and intermediate waters, characterized by layers of subsurface salinity maximum and minimum, originating from both hemispheres of the Pacific. Vertical section of temperature in the upper 200 m shows the typical trough-ridge structure associated with the zonal current system for most of the tropical Pacific. Water with the lowest salinity of less than 33.6 was found in the upper 30 m between $8.5^{\circ}N$ and $10.5^{\circ}N$ in a boundary zone between the North Equatorial Current and North Equatorial Countercurrent. Temporal changes in water properties observed at $10.5^{\circ}N$ over a period of 9 days suggest both the local rainfall and horizontal advection is responsible for the presence of the low-salinity water. Development of a barrier layer was also observed at $10.5^{\circ}N$. In the North Equatorial Current region a local upwelling was observed at $15^{\circ}N$, which brings high salinity and cooler subtropical water to the sea surface. A band of countercurrent occurs in the upwelling region between $13^{\circ}N$ and $15^{\circ}N$.

The Characteristics and Survival Rates of Evergreen Broad-Leaved Tree Plantations in Korea (난대상록활엽수종 조림지 활착률과 영향인자)

  • Park, Joon-Hyung;Jung, Su-Young;Lee, Kwang-Soo;Lee, Ho-Sang
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.513-521
    • /
    • 2019
  • With rapid climate change and increasing global warming, the distribution of evergreen broad-leaved trees (EBLTs) is gradually expanding to the inland regions of Korea. The aim of the present study was to analyze the survival rate of 148 EBLT plantations measuring 180 ha and to determine the optimal plantation size that would help in coping with climate change in the warm, temperate climate zone of the Korean peninsula. For enhancing the reliability of our estimated survival model, we selected a set of 11 control variables that may have also influenced the survival rates of the EBLTs in the 148 plantations. The results of partial correlation analysis showed that the survival rate of 67.0±26.9 of the EBLTs in the initial plantation year was primarily correlated with plantation type by the crown closure of the upper story of the forest, wind exposure, and precipitation. For predicting the probability of survival by quantification theory, 148 plots were surveyed and analyzed with 11 environmental site factors. Survival rate was in the order of plantation type by the crown closure of upper story of the forest, wind exposure, total cumulative precipitation for two weeks prior to planting, and slope stiffness in the descending order of score range in the estimated survival model for the EBLTs with the fact that survival rate increased with shade rate of upper story to some extent.

Vegetation structure and distribution characteristics of Symplocos prunifolia, a rare evergreen broad-leaved tree in Korea

  • Kim, Yangji;Song, Kukman;Yim, Eunyoung;Seo, Yeonok;Choi, Hyungsoon;Choi, Byoungki
    • Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.275-285
    • /
    • 2020
  • Background: In Korea, Symplocos prunifolia Siebold. & Zucc. is only found on Jeju Island. Conservation of the species is difficult because little is known about its distribution and natural habitat. The lack of research and survey data on the characteristics of native vegetation and distribution of this species means that there is insufficient information to guide the management and conservation of this species and related vegetation. Therefore, this study aims to identify the distribution and vegetation associated with S. prunifolia. Results: As a result of field investigations, it was confirmed that the native S. prunifolia communities were distributed in 4 areas located on the southern side of Mt. Halla and within the evergreen broad-leaved forest zones. Furthermore, these evergreen broad-leaved forest zones are themselves located in the warm temperate zone which are distributed along the valley sides at elevations between 318 and 461 m. S. prunifolia was only found on the south side of Mt. Halla, and mainly on south-facing slopes; however, small communities were found to be growing on northwest-facing slopes. It has been confirmed that S. prunifolia trees are rare but an important constituent species in the evergreen broad-leaved forest of Jeju. The mean importance percentage of S. prunifolia community was 48.84 for Castanopsis sieboldii, 17.79 for Quercus acuta, and 12.12 for Pinus thunbergii; S. prunifolia was the ninth most important species (2.6). Conclusions: S. prunifolia can be found growing along the natural streams of Jeju, where there is little anthropogenic influence and where the streams have caused soil disturbance through natural processes of erosion and deposition of sediments. Currently, the native area of S. prunifolia is about 3300 ㎡, which contains a confirmed population of 180 individual plants. As a result of these low population sizes, it places it in the category of an extremely endangered plant in Korea. In some native sites, the canopy of evergreen broad-leaved forest formed, but the frequency and coverage of species were not high. Negative factors that contributed to the low distribution of this species were factors such as lacking in shade tolerance, low fruiting rates, small native areas, and special habitats as well as requiring adequate stream disturbance. Presently, due to changes in climate, it is unclear whether this species will see an increase in its population and habitat area or whether it will remain as an endangered species within Korea. What is clear, however, is that the preservation of the present native habitats and population is extremely important if the population is to be maintained and expanded. It is also meaningful in terms of the stable conservation of biodiversity in Korea. Therefore, based on the results of this study, it is judged that a systematic evaluation for the preservation and conservation of the habitat and vegetation management method of S. prunifolia should be conducted.