• Title/Summary/Keyword: subtilis

Search Result 1,970, Processing Time 0.035 seconds

Discrimination of Bacillus subtilis from Other Bacillus Species Using Specific Oligonucleotide Primers for the Pyruvate Carboxylase and Shikimate Dehydrogenase Genes

  • Lee, Gawon;Heo, Sojeong;Kim, Tao;Na, Hong-Eun;Park, Junghyun;Lee, Eungyo;Lee, Jong-Hoon;Jeong, Do-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1011-1016
    • /
    • 2022
  • Bacillus subtilis is a useful bacterium in the food industry with applications as a starter strain for fermented food and as a probiotic. However, it is difficult to discriminate B. subtilis from other Bacillus species because of high phenotypic and genetic similarity. In this study, we employed five previously constructed multilocus sequence typing (MLST) methods for the discrimination of B. subtilis from other Bacillus species and all five MLST assays clearly distinguished B. subtilis. Additionally, the 17 housekeeping genes used in the five MLST assays also clearly distinguished B. subtilis. The pyruvate carboxylase (pyrA) and shikimate dehydrogenase (aroE) genes were selected for the discrimination of B. subtilis because of their high number of polymorphic sites and the fact that they displayed the lowest homology among the 17 housekeeping genes. Specific primer sets for the pyrA and aroE genes were designed and PCR products were specifically amplified from B. subtilis, demonstrating the high specificity of the two housekeeping genes for B. subtilis. This species-specific PCR method provides a quick, simple, powerful, and reliable alternative to conventional methods in the detection and identification of B. subtilis.

Cloning of Biosurfactant-Producing Gene from Bacillus subtilis KL-57 (Bacillus subtilis KL-57로부터 생산되는 생체계면활성제 합성 유전자 클로닝)

  • 강상모;이병옥;이철수
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.6
    • /
    • pp.593-598
    • /
    • 1994
  • A bacterium KL-57 which exhibited biosurfactant activity was isolated. This bacterium was identified as Bacillus subtilis. The biosurfactant-producing gene of B. subtilis KL-57 was cloned into R subtilis MI113 by using plasmid pTB523. The plasmid DNA from the clone was found to carry a 18 kb PstI insert. The biosurfactant-producing gene was cleaved into 4 fragments by SmaI, 3 fragments by PvulI or EcoRl, 4 fragments by PvulI and EcoRI double digestion, 5 fragments by AccI, and 2 fragments by KpnI, HindIII or BamHI. By subcloning the 18 kb Pstl insert, a 2.3 kb EcoRl fragment conferred the biosurfactant producing activity on B. subtilis cells. The 2.3 kb had one HindIII cleave site. But Two fragments, which corresponds HindIII/EcoRl termini, exhibited no biosurfactant activity.

  • PDF

Effects of Bacillus subtilis on Growth Performance and Resistance to Salmonella Infection in Broiler Chickens

  • Yoo, Jae Hong
    • Korean Journal of Poultry Science
    • /
    • v.40 no.3
    • /
    • pp.277-281
    • /
    • 2013
  • The experiment was undertaken to see the effects of Bacillus sp. on the growth performance and disease resistance to Salmonella sp. infections. The use of probiotic microbes in poultry is commonly practiced. In this study, Bacillus subtilis was tested using a total of 120 chicks of age of 1 day after hatching. The growth traits examined were body weight gain and feed conversion rate. And also, the Salmonella resistance of Bacillus subtilis was tested after the chicks were orally administered with Salmonella pullorum by gavage force injections. The result showed that Bacillus subtilis yielded a high feed efficiency, consequently increased growth rate. For the effect of Bacillus subtilis on Salmonella infection, Bacillus subtilis significantly improved the resistance to Salmonella pullorum infection. Various clinical symptoms of Salmonella infection were highly decreased by addition of Bacillus sp.

Identification of a Newly Isolated Protease-producing Bacterium, Bacillus subtilis FBL-1, from Soil (토양으로부터 새로이 분리된 단백질 분해효소 생산 미생물 Bacillus subtilis FBL-1의 동정)

  • Kim, Mina;Si, Jin-Beom;Wee, Young-Jung
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.185-193
    • /
    • 2016
  • A novel proteolytic bacterium was isolated from soil at Yeungnam University, South Korea. The strain, named FBL-1, was rod-shaped with a smooth surface. Biolog and API 50CHB test results revealed that strain FBL-1 was a Bacillus species. Based on 16S rDNA sequencing and chemotaxonomic characterization, the strain was identified as Bacillus subtilis because it had the highest homology with Bacillus subtilis subsp. subtilis NCIB 3610 (99.5%). In liquid culture at 37℃ with shaking at 200 rpm, fructose and yeast extract were found to be the best carbon and nitrogen sources, respectively, for cell growth and protease production. The highest protease activity (451.640 U/ml) was obtained when the strain was cultured in medium containing 20 g/l of fructose and 5 g/l of yeast extract. Although further studies are needed to characterize the protease and enhance its activity, the newly isolated protein-degrading B. subtilis FBL-1 can be applicable for the production of peptides and for the degradation of proteins in various industries.

Quality characteristics of popped rice Doenjang prepared with Bacillus subtilis strains (Bacillus subtilis 균주를 이용하여 제조한 팽화미 된장의 품질 특성)

  • Lee, Kyung Ha;Kim, Eun Ju;Choi, Hye Sun;Park, Shin Young;Kim, Jae Hyun;Song, Jin
    • Food Science and Preservation
    • /
    • v.22 no.4
    • /
    • pp.545-552
    • /
    • 2015
  • This study investigated the quality characteristics of popped rice Doenjang prepared with different Bacillus strains (Bacillus subtilis KACC 15935, and Bacillus subtilis HJ18-9). The changes in the enzyme activity (protease, cellulase, and ${\alpha}$-amylase), amino-type nitrogen and ammonia-type nitrogen contents, and the reducing sugar were investigated during the fermentation period. Enzymes such as protease, cellulase, and a-amylase plays an important role in the changes in composition of nutrients, and in flavor and taste of popped rice Doenjang. Protease activities of the popped rice deonjang fermented with different Bacillus strains (control, B. subtilis KACC 15935, and B. subtilis HJ18-9) was in the range of 171.77-185.97 unit/g at the beginning of fermentation, and there were no significant differences among the samples. On the other hand, the protease activity in popped rice Doenjang fermented with B. subtilis HJ18-9 increased significantly up to $248.77{\pm}4.53unit/g$ at the end of fermentation (p<0.05). Cellulase activity and a-amylase activity of popped rice Doenjang in HJ18-9 was higher than these of other samples. After 56 days of fermentation, amino-type nitrogen in popped rice deonjang fermented with control, B. subtilis KACC 15935, and B. subtilis HJ18-9 increased significantly up to $174.99{\pm}3.70$, $166.59{\pm}1.40$, $225.39{\pm}3.70mg%$, respectively (p<0.05). These results suggested that B. subtilis HJ18-9 was a suitable starter for the preparation of soybean paste.

Application of Hydrogen Peroxide on the Bacterial Control of Seaweed, Capsosiphon fulvescens (Mesaengi) (해조류 매생이(Capsosiphon fulvescens)의 저장기간 연장을 위한 과산화수소의 활용)

  • Kim, Du-Woon;Kim, Mi-Jung;Shin, Tai-Sun;Kim, Sun-Jae;Jung, Bok-Mi
    • Food Science and Preservation
    • /
    • v.15 no.2
    • /
    • pp.169-173
    • /
    • 2008
  • Bacillus subtilis subsp. subtilis constitutes 90% of the total viable bacteria present on Capsosiphon fulvescens. We found that hydrogen peroxide (50 ppm) and NaOCl (50 ppm) were more effective than electrolyzed water (EW, 50ppm) against B. subtilis subsp. subtilis that was isolated from this seaweed. Relative to a control, 50 ppm hydrogen peroxide reduced the total viable population by $1.8{\pm}0.4$ log CFU/g, whereas 50 ppm EW increased the total viable population by $1.7{\pm}0.5$ log CFU/g. CFUs were evaluated following 30 days of storage at $4^{\circ}C$ using air- and vacuum-packaging. Samples treated with 50 ppm hydrogen peroxide and NaOCl showed a $1.6{\pm}0.1$-fold decrease in initial hardness ($7.9{\times}10^6dyne/cm^2$), while the samples treated with 50 ppm EW had a $2.1{\pm}0.1$-fold decrease in initial hardness ($7.9{\times}10^6dyne/cm^2$). Again, measurements were performed after storage at $4^{\circ}C$ for 20 days. This study indicates that B. subtilis subsp. subtilis is the most common contaminant in aerobically or anaerobically packaged seaweed and should therefore be the main target for quality control during long-term storage. Hydrogen peroxide and NaOCl are more effective than EW in inhibiting B. subtilis subsp. subtilis and in reducing total bacterial loads in air- and vacuum-packaged seaweed.

Solubility, Viscosity, Water Holding Capacity, and Oil Holding Capacity of Soybean Proteins by Bacillus subtilis and/or Lactobacillus bulgaricus (Bacillus subtilis와 Lactobacillus bulgaricus에 의한 청국장 단백질의 용해성, 점성, 보수성 및 보유성)

  • Lee, Jin-Woo
    • The Korean Journal of Community Living Science
    • /
    • v.18 no.3
    • /
    • pp.399-406
    • /
    • 2007
  • Soybean seeds were fermented by Bacillus subtilis and/or Lactobacillus bulgaricus to improve solubility, viscosity, water holding capacity and oil holding capacity of soybean proteins in Chongkukjang. The maximum colony forming unit and protease activity of B. subtilis or L bulgaricus were observed after 60 hours of fermentation, and those of the mixed fermentation by two microorganisms were steadily increased during the fermentation periods. Solubilities of soybean proteins by B. subtilis or L bulgaricus were steadily increased before the values were considerably increased to 60 hours of fermentation, whereas water holding capacities of the proteins were decreased by B. subtilis or L. bulgaricus and those of the mixed fermentation were decreased progressively. Viscosities of soybean proteins by B. subtilis and/or L. bulgaricus were decreased progressively during the fermentation. Viscosities of soybean proteins by B. subtilis and/or L. bulgaricus were decreased progressively during the fermentation. Oil holding capacities of soybeans by B. subtilis or L. bulgaricus were maximum at 20 or 80 hours of fermentation and those of the mixed fermentation were decreased after 10 hours of the fermentation.

  • PDF

Cultural Characterization of Bacteriolytic Bacillus subtilis SH-1 Isolated from Pusan Coastal Sea (해양에서 분리한 용균세균인 Bacillus subtilis SH-1의 배양특성)

  • 류병호;진성현
    • Journal of Food Hygiene and Safety
    • /
    • v.10 no.4
    • /
    • pp.231-237
    • /
    • 1995
  • Bacillus subtilis SH-1 have been isolated and identified from coastal sea, in Pusan, The optimal cultural characterization of Bacillus subtilis SH-1 for 속 production of bacteriolytic enzyme was determained. Bacillus subtilis SH-1 produced the bacteriolytic enzyme well in the medium consist of 1.0% glucose, 1.0% yeast extract, 1.0% NaCI, 0.02% $K_2HPO_4,\;0.002%\;MgSo_4{\cdot}7H_2O,\;0.001%\;MnSO_4{\cdot}5H_2O,\;0.0001%\;FeSO_4{\cdot}7H_2O$. The optimal medium pH, incubation temperature, and shaking tome for the highest production of the enzyme were 8.0, $30^{\circ}C$ and 28 hours respectively.

  • PDF

High-Level Expression and Secretion of Bacillus pumilus Lipase B26 in Bacillus subtilis Chungkookjang

  • Lee, Mi-Hwa;Song, Jae-Jun;Choi, Yoon-Ho;Hong, Seung-Pyo;Rha, Eu-Gene;Kim, Hyung-Kwoun;Lee, Seung-Goo;Poo, Har-Young;Lee, Sang-Chul;Seu, Young-Bae;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.892-896
    • /
    • 2003
  • High-level expression of the lipase B26 gene from Bacillus pumilus was achieved using Bacillus subtilis Chungkookjang isolated from the Korean traditional fermented bean paste, Chungkookjang. For the secretory production of recombinant lipase B26 in a Bacillus host system, pLipB26 was constructed by ligating the lipase B26 gene into the recently designed Escherichia coli-Bacillus shuttle vector, pLipSM, and that was then transformed into B. subtilis Chungkookjang. Among the various vector, medium, and host combinations, B. subtilis Chungkookjang harboring the pLipB26 exhibited the highest lipase activity in PY medium, and B. subtilis Chungkookjang secreted two times more enzymes than B. subtilis DB 104 under the same condition. When B. subtilis Chungkookjang harboring the pLipB26 was cultured in a 5-1 jar-fermentor containing 21 of a PY medium, the maximum lipase activity (140 U/ml) and production yield (0.68 g/l) were obtained during the late exponential phase from a cell-free culture broth. Although B. subtilis Chungkookjang also secreted extracellular proteases at the late exponential phase, these results suggested the potential of B. subtilis Chungkookjang as a host for the secretory production of foreign proteins.

Variation of fibrinolytic enzyme activity produced Bacillus subtilis by gene cloning (유전자 cloning에 의한 Bacillus subtilis의 fibrinolytic enzyme 활성 변화)

  • 이홍석;유천권;이철수;강상모
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.1
    • /
    • pp.14-20
    • /
    • 2000
  • The transformation of Bacillus subtilis K-54 and J-10 was carried out with constructed vectors containing structure and enhancer genes of aprN and prtR, to increase their fibrinolytic enzyme activity. Bands for the aprN and prtR genes were identified from B. subtilis J-10 by PCR that was carried out with the constructed primers for the genes. In addition, the gene fragments contained promoter site based on the results of analysing their nucleotide sequence. The two gene fragments, aprN and prtR, obtained by the PCR, were, then, inserted to vector such as T-vector and E.coli/Bacillus shuttle vector. The constructed vector were designated as pAPR2 (aprN), pENC2 (prtR) and pFLA1 (aprN and prtR), respectively. The constructed vector was used for transformation of the strains of B.subtilis J-10 and B. subtilis K-54 and the fribrinolytic activity of the transformed strains was investigated. The introduction of the vector, pAPR2 and the fibrinolytic activity of the transformed strains was investigated. The introduction of the vector, pAPR2 and pFLA1, resulted in the increase of fibrinolyitic enzyme activity in B. subtilis J-10 by 27.3% and 16%, respectively. However, the introduction of pENC2 to B. subtilis J-10 did not seem to induce increase of the enzyme activity. The strain of B.subtilis K-54 transformed with pENC2 showed an increased fibrinolytic activity by 5 folds compared with that of the original strain of B. subtilis K-54.

  • PDF