• Title/Summary/Keyword: subsurface water

Search Result 492, Processing Time 0.031 seconds

Spatial and Seasonal Variability of Soil Moisture Properties along Transect Line on a Forest Hillslope in the Cheong-Mi Catchment (청미천 유역 내 산림사면에서 단면선에 따른 토양수분특성의 공간적 계절적 변동)

  • Gwak, Yong-Seok;Kim, Sang-Hyun;Jung, Sung-Won;Lee, Yeon-Gil;Lee, Jung-Hoon;Kim, Su-Jin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.1
    • /
    • pp.45-57
    • /
    • 2015
  • Soil moisture is critical for understanding the spatial-temporal variability of hydrologic processes. The distributions of soil moisture have been explored along transect line in hillslope hydrology. In this study, we measured several soil moistures along transect lines during ten-month period at a hillslope located the Cheong-mi catchment. The soil moisture properties were expressed by simple statistical methods (average, standard deviation, and recession slope) and analyzed in terms of soil depths and transects from the seasonal context. Supplementary studies were also performed about the effect of location, topography and soil texture to the soil moisture responses. The spatial distributions of average soil moisture at deep soil layer were distinguished from those at near surface due to the possibility of expected factors such as subsurface lateral flow from upslope, preferential flow and existence of bedrock. The soil moistures in combined line affected from significant contribution of upper transect line were relatively higher(wetter), low variability compared to those in other transect lines and seemed to be under stabilization process. There are confirmed heterogeneity of soil moisture variation related with preferential flow and significant influence of soil texture for soil moisture properties in upslope.

Measurement of GPR Direct Wave Velocity by f-k Analysis and Determination of Dielectric Property by Dispersive Guided Wave (f-k 분석에 의한 레이다파 속도 측정 및 레이다파의 분산성 가이드 현상을 이용한 지하 물성 계산)

  • Yi, Myeong-Jong;Endres, Anthony L.;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.304-315
    • /
    • 2006
  • We have examined the applicability of f-k analysis to the GPR direct wave measurement for water content to characterize vadose zone condition. When the vadose zone consists of a dry surface layer over wet substratum, we obtained f-k spectra where most of the energy is bounded by the air and dry soil velocities. In this case, dry soil velocity was successfully estimated by using high frequency data. On the other hands, when wet soil overlies dry substratum, the f-k spectra show a contrasting response where most of the energy travels with the velocity bounded by dry and wet soil velocities. In this case, the radar waves are trapped and guided within wet soil layer, exhibiting velocity dispersion. By adopting modal propagation theory, we could formulae a simple inversion code to find two layer's dielectric constants as well as layer thickness. By inverting the velocity dispersion curve obtained from f-k spectra of synthetic modeling data, we could obtain good estimates of dielectric constants of each layer as well as first layer thickness. Moreover, we could obtain more accurate results by including the higher mode data. We expect this method will be useful to get the quantitative property of real subsurface when the field condition is similar.

EXPERIMENTAL STUDY ON THE DISSOLUTION COMPONENTS AND CORROSION PRODUCTS OF SEVERAL AMALGAMS IN ARTIFICIAL SALIVA (인공타액에서 수종 아말감의 부식시 용해성분 및 표면 부식 생성물에 관한 실험적 연구)

  • Cho, Seung-Joo;Lee, Myung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.1
    • /
    • pp.1-26
    • /
    • 1994
  • The purpose of this study was to investigate the dissolution components during corrosion of amalgams and to identify surface corrosion products in the modified Fusayama artificial saliva. Four type of amalgam alloys were used: low copper lathe cut amalgam alloy (Cavex 68), low copper spherical amalgam alloy (Caulk Spherical Alloy), high copper admixed amalgam alloy (Dispersalloy) and high copper single composition amalgam alloy (Tytin). Each amalgam alloy and Hg were triturated according to the manufacturer's direction by means of mechanical amalgamator (Capmaster, S.S.White), and then the triturated mass was inserted into the cylindrical metal mold which was 10mm in diameter and 2.0mm in height and condensed with compression of 150kg/$cm^2$ using oil pressor. The specimens were removed from the mold and stored at room temperature for 7 days and cleansed with distiled water for 30 minutes in an ultrasonic cleaner. The specimens were immersed in the modified Fusayama artificial saliva for the periods of 1 month, 3 months and 6 months. The amounts of Hg, Cu, Sn and Zn dissolved from each amalgam specimen immersed in the artificial saliva for the periods of 1 month, 3 months and 6 months were measured using Inductivity Coupled Plasma Atomic Emission Spectrometry (ICPQ-1000, Shimadzu, Japan) and amount of Ag dissolved from amalgam specimen was measured using Atomic Absorption Spectrophotometry (Atomic Absorption/Flame emission spectrophotometer M-670, Shimadzu, Japan). A surface corrosion products of specimens were analysed using Electron Spectroscopy Chemical Analyser (ESCA PHI-558, PERKIN ELMER, U.S.A.). The secondary image and back scattered image of corroded surface of specimens was observed under the SEM, and the corroded surface of specimens was analysed with the EDX. The following results were obtained. 1. The dissolution amount of Cu was the most in high copper admixed amalgam(Dispersalloy) and the least in high copper single composition amalgam(Tytin). 2. Sn and Zn were dissolved during all the experiment periods, and dissolution amounts were decreased as the time elapsed. 3. Initial surface corrosion products were ZnO and SnO. 4. Corrosion of ${\gamma}$ and ${\gamma}_2$ phase in low copper amalgams was observed and Ag-Cu eutectic alloy phase was corroded in low copper spherical amalgam(Caulk Sperical Alloy). 5. Corrosion of ${\gamma}$ and $\eta$' phase in high copper amalgams was observed and Ag-Cu eutectic alloy phase was corroded in high copper admixed amalgam(Dispersalloy). 6. Sn-Cl was produced in the subsurface of low copper amalgams and high copper admixed amalgam.

  • PDF

Characterization of Fracture System for Comprehensive Safety Evaluation of Radioactive Waste Disposal Site in Subsurface Rockmass (방사성 폐기물 처분부지의 안정성 평가검증을 위한 균열암반 특성화 연구)

  • 이영훈;신현준;김기인;심택모
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.111-119
    • /
    • 1999
  • The purpose of this study is the simulation of discontinuous rockmass and identification of characteristics of discontinuity network as a branch of the study on characteristics of groundwater system in discontinuous rockmass for evaluation of safety on disposal site of radioactive waste. In this study the site for LPG underground storage was selected for the similarities of the conditions which were required for disposal site of radioactive waste. Through the identification of hydraulic properties. characteristics of discontinuities and selection of discontinuity model around LPG underground storage facility. the applications of discrete fracture network model were evaluated for the analysis of pathway. The orientation and spatial density of discontinuities are primarily important elements for the simulation of groundwater and solute transportation in discrete fracture network model. In this study three fracture sets identified and the spatial intensity (P$_{32}$) of discontinuities is revealed as 0.85 $m^2$/㎥. The conductive fracture intensity (P$_{32c}$) estimated for the simulation area around propane cavern (200${\times}$200${\times}$200) is 0.536 $m^2$/㎥. Truncated conductive fracture intensity (T-P$_{32c}$) is calculated as 0.26 $m^2$/㎥ by eliminating the fracture with the iowest transmissivity and based on this value the pathway from the water curtain to PC 2. PC 3 analyzed.

  • PDF

Analysis of the Factors Affecting Nutrients Removal in Hybrid Constructed Wetland Treating Stormwater Runoff (강우 유출수 처리를 위한 하이브리드 인공습지의 영양물질 저감 인자 분석)

  • Gurung, Sher Bahadur;Geronimo, Franz Kevin F.;Choi, Hyeseon;Hong, Jungsun;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.20 no.1
    • /
    • pp.54-62
    • /
    • 2018
  • Nutrients generated from various land uses lead to eutrophication during the influx of water, and it is necessary to apply the LID techniques to reduce nutrients from nonpoint sources in order to mitigate the occurrence of the algal bloom. This study was carried out to derive the design factors of hybrid artificial wetland (HCW) to increase the removal efficiency of nutrients. HCW system was constructed in the year 2010 for the treatment of rainfall runoffs from parking lots and roads composed of 100% impervious floors in the Cheonan campus of Kongju University. The average nutrients removal efficiency of TN and TP was 74% and 72%, respectively. Both TN and TP removal efficiencies were higher than those of free surface wetlands and subsurface flow wetlands due to activated physical and ecological mechanisms. The critical design parameters for the efficient nutrients removal in the artificial wetlands were the ratio of the surface area to the catchment area (SA/CA), land use, the rainfall runoff, and the rainfall intensity. The optimal carbon to nitrogen (C/N) ratio was estimated at 5: 1 to 10.3: 1. The results of this study can be applied to the efficient design of hybrid artificial wetlands to treat nutrients in urban runoff with high efficiency.

An Influence Analysis on the Gap Space of an Engineered Barrier for an HLW Repository (고준위폐기물처분장 공학적방벽의 갭 공간이 미치는 영향 분석)

  • Yoon, Seok;Lee, Changsoo;Kim, Min-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.4
    • /
    • pp.19-26
    • /
    • 2021
  • The high-level radioactive waste (HLW) produced from nuclear power plants is disposed in a rock-mass at a depth of hundreds meters below the ground level. Since HLW is very dangerous to human being, it must be disposed of safely by the engineered barrier system (EBS). The EBS consists of a disposal canister, backfill material, buffer material, and so on. When the components of EBS are installed, gaps inevitably exist not only between the rock-mass and buffer material but also between the canister and buffer material. The gap can reduce water-retarding capacity and heat release efficiency of the buffer material, so it is necessary to investigate properties of gap-filling materials and to analyze gap spacing effect. Furthermore, there has been few researches considering domestic disposal system compared to overseas researches. In this reason, this research derived the peak temperature of the bentonite buffer material considering domestic disposal system based on the numerical analysis. The gap between the canister and buffer material had a minor effect on the peak temperature of the bentonite buffer material, but there was 40% difference of the peak temperature of the bentonite buffer material because of the gap existence between the buffer material and rock mass.

Analysis of the Failure Mode in a Homogeneous Sandy Slope Using Model Test (모형실험을 이용한 균질한 사질토 사면의 붕괴형상 분석)

  • Song, Young-Suk;Park, Joon-Young;Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.32 no.2
    • /
    • pp.209-219
    • /
    • 2022
  • To experimentally investigate the variation of soil characteristics in slope during rainfall and the shape of slope failure, the model test was performed using soil box and artificial rainfall simulator. The model test of slope formed by the homogenous sand was performed, and the saturation pattern in the model slope due to rainfall infiltration was observed. The slope model with the inclination of 35° was set up on the slope of 30°, and the rainfall intensity of 50 mm/hr was applied in the test. The soil depth of 35 cm was selected by considering the size of soil box, and the TDR (time domain reflectometry) sensors were installed at various depths to investigate the change of soil characteristics with time. As the result of model test, the slope model during rainfall was saturated from the soil surface to the subsurface, and from the toe part to the crest part due to rainfall infiltration. That is, the toe part of slope was firstly saturated by rainfall infiltration, and then due to continuous rainfall the saturation range was enlarged from the toe part to the crest part in the slope model. The failure of slope model was started at the toe part of slope and then enlarged to the crest part, which is called as the retrogressive failure. At the end of slope failure, the collapsed area increased rapidly. Also, the mode of slope failure was rotational. Meanwhile, the slope failure was occurred when the matric suction in the slope was reached to the air entry value (AEV) estimated in soil-water characteristic curve (SWCC).

Numerical Simulation of Salinity Intrusion into Groundwater Near Estuary Barrage with Using OpenGeoSys (OpenGeoSys를 이용한 하굿둑 인근 지하수 내 염분 침투 수치모의)

  • Hyun Jung Lee;Seung Oh Lee;Seung Jin Maeng
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.157-164
    • /
    • 2023
  • The estuary dam is a structure installed and operated in a closed state except when flood event occurs to prevent inland saltwater intrusion and secure freshwater supply. However, the closed state of dam leads to issues such as eutrophication, so it is necessary to examine the extent of saltwater intrusion resulting from the opening of sluice gates. Groundwater, due to its subsurface conditions and slow flow characteristics, is widely analyzed using numerical models. OpenGeoSys, an open-source software capable of simulating Thermal- Hydraulic- Mechanical- Chemical phenomena, was adopted for this study. Simulations were conducted assuming natural flow conditions without dam and operating considering busy farming season, mostly from March to September. Verification of the model through analytical solutions showed error of 3.7%, confirming that OpenGeoSys is capable of simulating saltwater intrusion for these cases. From results simulated for 10 years, considering for the busy farming season, resulted in about 46% reduction in saltwater intrusion length compared to natural flow conditions, approximately 74.36 m. It may be helpful to make choices to use groundwater as a water resource.

Analysis of Land Creep in Ulju, South Korea (울주에서 발생한 땅밀림 특성)

  • Jae Hyeon Park;Sang Hyeon Lee;Han Byeol Kang;Hyun Kim;Eun Seok Jung
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.1
    • /
    • pp.14-30
    • /
    • 2024
  • This study characterized areas at risk of land creep by focusing on a site that has undergone this phenomenon in Ulju-gun, South Korea. Land creep in the area of interest was catalyzed by road expansion work conducted in 2022. The site was examined on the basis of its geological features, topography, effective soil depth, soil hardness, electrical resistivity, and subsurface profile. It consists of a slope covered with sparse vegetation and a concave top that retains rainwater during rainfall. Compositionally, land creep affected the shale, sandstone, and conglomerate formations on the site, which had little silt and more sand and clay compared with areas that were unaffected by land creep. An electrical resistivity survey enabled us to detect a groundwater zone at the site, which explains the softness of the soil. Finally, the effective soil depth at the land creep-affected area was 30.4 cm on average, indicating deep colluvial deposits. In contrast, unaffected sites had an effective soil depth of 24.7 cm on average. These results should facilitate the creation of systems for monitoring and preemptively responding to land creep, significantly mitigating the socioeconomic losses associated with this phenomenon.

Division of Soil Properties in Reclaimed Land of the Mangyeong and Dongjin River Basin and Their Agricultural Engineering Management (만경강과 동진강 유역 간척농경지 토양특성 구분과 농공학적 관리 대책)

  • Hwang, Seon-Woong;Kang, Jong-Gook;Lee, Kyung-Do;Lee, Kyung-Bo;Park, Ki-Hun;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.444-450
    • /
    • 2012
  • The physical and chemical properties of soil in the Mangyeong and Dongjin river basin had been investigated in order to establish the most optimum soil improvement plan on the reclaimed land. The total soil area by reclamation in Saemangeum basin is 113,971 ha. The classification by the distribution of soil series and soil texture is as following. 13 soil series including Chonnam, Buyong and Chonbuk series are period-unknown areas. Regarding the soil texture, they are fine silty ~ clayey very fine. From 1920s to 1960s, Mangyeong, Gwanghwal and Chonbuk series had coarse silty textured soil. After the 1970s, Mangyeong, Gwanghwal, Munpo, Yeompo, Poseung, Gapo and Hasa series have more sandy soil ~ moderately coarse loamy textured soil. Regarding the chemical properties, the concentrations of EC, Exch. $K^+$, $Mg^{2+}$, $Na^+$ and pH are high regardless of the time of reclamation. On the other hand, organic matter (OM) of top soil were 3.3~16.1 g $kg^{-1}$. The organic matter contents were very low though the soil had been farmed for a long time. Furthermore, the deep soil had almost no organic matter with 5.6~1.1 g $kg^{-1}$. The reason is believed that there had not been any movement of OM and clay because pressure or induced pans had been formed by large agricultural machineries and poor vertical drain. Regarding the forming of illuvial horizon (B layer) which tells the development extent of soil, only in the Hwapo reclaimed area where rice had been cultivated for past 90 years, Fe and Mn from top soil are deposited at underground 20~30 cm with 7~8 cm thickness by the movement of clay. It is believed that it had been possible because the earthiness is silty clay loam soil with relatively high content of clay. The soils are soil with concern of damage from sea water, soil on flimsy ground and sandy soil. Therefore, soil improvement for stable crop production can be expected; if the water table would be lowered by subsurface drainage, the water permeability would be enhanced by gypsum and organic matter, and the sandy soil would be replaced by red soil with high content of clay.