• Title/Summary/Keyword: subsurface water

Search Result 492, Processing Time 0.019 seconds

Estimation of Denitrification in the Ganghwa Tidal Flat by a Pore Water Model (공극수 모델로 추정한 강화도 갯벌의 탈질산화 작용)

  • Na, Tae-Hee;Lee, Tong-Sup
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.56-68
    • /
    • 2005
  • We measured nitrate and other nutrients in sediment pore waters retrieved from three sites at the southern upper-tidal flats of the Ganghwa Island. Denitrification rate is estimated by applying a simple 1-D model to the nitrate profiles. Results from Jangwha and Dongmak sites are $7.8{\sim}9.4{\times}10^{-7}{\mu}mol{\cdot}cm^{-2}{\cdot}sec^{-1}$, and $1.4{\sim}3.6{\times}10^{-7}{\mu}mol{\cdot}cm^{-2}{\cdot}sec^{-1}$, respectively. Rates are comparable to those reported around the world in an order of magnitude. Denitrification was lower in summer. The rates were about 1.5 times higher at site where the surface sediments consist of relatively coarser particles. This implies that particle size would control the reactant supply to the subsurface sediment. One may claim the denitrification as an evidence of the biogeochemical purification function of tidal flat. However, the purification seems not a general attribute of a tidal flat when whole system is scrutinized by a thermodynamic criterion. Currently the term 'tidal flat' is used when describing the diverse coastal wetlands such as salt marshes, sandy tidal flats and muddy tidal flats, which exhibit quite different ecological functions. Thus it is worthy of mentioning that the classification of coastal wetlands on the basis of sedimentological characteristics and biogeochemical functions should facilitate our understanding.

Variation of Lead Content in Paddy Rice and Soil of Mangyeoung River Area (만경강 유역의 토양과 수도체 중 Pb 함량의 변화에 관한 연구)

  • Kim, Seong-Jo;Ryu, Taek-Kyu;Lee, Man-Sang;Yang, Chang-Hyu;Jeon, Kyung-Soo;beak, Seung-Hwa
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.3
    • /
    • pp.177-184
    • /
    • 1992
  • To investigate differences in lead contents of paddy soils and rice plants affected by municipal and industrial waste water pollution in Mangyeong River area, soil and plants samples were collected in 1982 and 1990 according to the distances from the main inlet source and depths of soil. Soil samples were extracted with ${4H-HNO}_3$ and plant sampler were digested with mixture of ${HNO}_3$ and ${HCIO}_4$ for analyzing by atomic absorption spectrophotometry. The Pb contents in soils ranged from 13.2 to 56.4 mg $kg^{-1}$. Average Pb level in 1990 was some higher than that in 1982. Variation of Pb content with the distances from the source of waste water showed decreasing tendency wish distances, and it was clearer in 1990 than in 1982. A significant correlation was observed between Pb contents in surface and in subsurface soil, between Pb content in soils and soil properties as clay, OM, and $Ca^{++}$ in 1982, and between Pb content in soils and contents of Cu and Zn in soils. The average Pb content in leaf sheath was 3.42 times of that in brown rice. Pb content in brown rice ranged from 3.1 to 10.4mg $kg^{-1}$.

  • PDF

Concept and Application of Generalized Preferential Flow Model (GPFM) (Generalized Preferential Flow Model (GPFM)의 개념과 적용사례 연구)

  • Kim, Young-Jin;Steenhuis, Tammo;Nam, Kyoung-Phile
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.33-36
    • /
    • 2007
  • In recent years the convective-dispersive equation has been often discredited in predicting subsurface solute transport under field conditions due to presence of preferential flow paths. Kim et al. (2005) proposed a simple equation that can predict the breakthrough of solutes without excessive data requirements. In their Generalized Preferential Flow Model (GPFM), the soil is conceptually divided in a saturated "distribution layer" near the surface and a "conveyance zone" with preferential flow paths below. In this study, we test the model with previously published data, and compare it with a classical convective-dispersive model (CDM). With three parameters required-apparent water content of the distribution zone, and solute velocity and dispersion in the conveyance zone-GPFM was able to describe the breakthrough of solutes both through silty and sandy loam soils. Although both GPFM and CDM fitted the data well in visual, variables for GPFM were more realistic. The most sensitive parameter was the apparent water content, indicating that it is the determining factor to apply GPFM to various soil types, while Kim et al. (2005) reported that changing the velocity of GPFM reproduced solute transport when same soils were used. Overall, it seems that the GPFM has a great potential to predict solute leaching under field conditions with a wide range of generality.

A Study on Soil Characteristics of Paddy Fields with Re-established Soils

  • Sonn, Yeon-Kyu;Moon, Yong-Hee;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hye-Rae;Hyun, Byung-Keun;Shin, Kook-Sik;Han, Kyeong-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.3
    • /
    • pp.194-204
    • /
    • 2015
  • Six study sites in Gumi, Goryeong in Gyeongbuk province and Naju in Jeonnam province were selected to investigate soil properties of poorly drained horizons in paddy soils. The horizons were re-established layers which were parent material layers originated from fluvial deposits. Topsoil layers were differentiated from piled parent materials while soil structure of the topsoil layer was massive with striated microstructure. Compaction at soil re-establishment and a lack of structure and aggregate development in these soils may cause the limitation of vertical water movement and result in poorly drained horizons. Soil samples were taken from paddy fields with top soils of sandy loam, silt loam and silty clay loam and re-established soils of coarse and fine texture. The samples were taken from each horizon for the analyses of soil chemical and mineral properties. Soils with re-established soils of coarse texture had greater amounts of sands from top soil texture distributions, while soils with fine texture had greater amounts of silts. Chemical properties of top soils were analyzed from rice cultivated soils at the time of re-establishments and one year after the re-establishments. The coarse texture of the re-established horizons decreased in EC values from 0.23 to $0.11(dS\;m^{-1})$, available phosphate values from 112 to $54(mg\;kg^{-1})$, and exchangeable Ca values from 6.6 to $4.9(cmol_c\;kg^{-1})$. On the other hand, soils with fine texture showed decrease only in pH and exchangeable Ca values. Especially, organic matter and available phosphate contents showed heterogeneous distributions from each horizon. This result may be caused by mixture of plough layer and subsurface layer during and consolidation. Hydraulic conductivity values were low at the boundaries of top soil and parent material layers except SL/coarse soil. Soil microstructure was massive structure without soil clods or pores and showed striated structure. Therefore, re-established paddy fields with fluvial deposits as parent material layers showed limited vertical movements of soil water because of occurrence of compacted layers and less-development of soil clods and aggregates.

Analysis on Spatiotemporal Variability of Erosion and Deposition Using a Distributed Hydrologic Model (분포형 수문모형을 이용한 침식 및 퇴적의 시.공간 변동성 분석)

  • Lee, Gi-Ha;Yu, Wan-Sik;Jang, Chang-Lae;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.11
    • /
    • pp.995-1009
    • /
    • 2010
  • Accelerated soil erosion due to extreme climate change, such as increased rainfall intensity, and human-induced environmental changes, is a widely recognized problem. Existing soil erosion models are generally based on the gross erosion concept to compute annual upland soil loss in tons per acre per year. However, such models are not suitable for event-based simulations of erosion and deposition in time and space. Recent advances in computer geographic information system (GIS) technologies have allowed hydrologists to develop physically based models, and the trend in erosion prediction is towards process-based models, instead of conceptually lumped models. This study aims to propose an effective and robust distributed rainfall-sediment yield-runoff model consisting of basic element modules: a rainfall-runoff module based on the kinematic wave method for subsurface and surface flow, and a runoff-sediment yield-runoff model based on the unit stream power method. The model was tested on the Cheoncheon catchment, upstream of the Yongdam dam using hydrological data for three extreme flood events due to typhoons. The model provided acceptable simulation results with respect to both discharge and sediment discharge even though the simulated sedigraphs were underestimated, compared to observations. The spatial distribution of erosion and deposition demonstrated that eroded sediment loads were deposited in the cells along the channel network, which have a short overland flow length and a gentle local slope while the erosion rate increased as rainfall became larger. Additionally, spatially heterogeneous rainfall intensity, dependant on Thiessen polygons, led to spatially-distinct erosion and deposition patterns.

Aquifer Characterization Using Seismic Data on the Aquistore CCS Project, Canada (캐나다 아퀴스토어 탄성파자료를 통한 이산화탄소 지중저장 연구지역 대수층 특성화)

  • Cheong, Snons;Kim, Byoung-Yeop;Shinn, Young Jae;Lee, Ho-Yong;Park, Myung-Ho
    • Economic and Environmental Geology
    • /
    • v.47 no.6
    • /
    • pp.625-633
    • /
    • 2014
  • The Aquistore project is the world's first commercial capture, transportation, utilization and storage project of post-combustion $CO_2$ from a coal-fired thermo electric power plant, and the proposed storage is a saline aquifer at a depth of about 3,500 m. Deep saline aquifer, compared to hydrocarbon reservoir, provides the great volumetric potential for storage of $CO_2$ anywhere in the world, therefore the research results from the project may be exported globally to other sites. Geological $CO_2$ storage characterization for saline aquifer instead of hydrocarbon reservoir needs to estimate the geophysical properties of subsurface geology. This study calculated the geophysical property of water-saturated formation by applying amplitude variation analysis developed from oil and gas exploration. We correlated horizon tops at the well logs to seismic traveltime of 1,815 and 1,857 ms as Winnipeg and Deadwood formations. Gradient analysis from seismic traces showed correlation coefficient of 45 - 81 % on amplitude variation with respect to incident angle. Crossplot of intercept and gradient shows the inverse proportional trend which represents typical water saturated sediments. Product attribute of intercept and gradient described the base of wet sediment. Poisson's ratio change attribute increased at the top of target area satisfying with wet sediment and decreased at the top of basement in a dry rock bed.

Effect of Target Material and the Neutron Spectrum on Nuclear Transmutation of 99Tc and 129I in Nuclear Reactors (표적물질 및 중성자 스펙트럼이 99Tc과 129I의 원자로 내부 핵변환에 미치는 영향)

  • Kang, Seung-gu;Lee, Hyun-chul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.195-202
    • /
    • 2018
  • As a rule, geological disposal is considered a safe method for final disposal of high-level radioactive waste. However, some long-lived fission products like $^{99}Tc$ and $^{129}I$ contained in spent nuclear fuel are highly mobile as less sorbing anionic species in the subsurface environment and can mainly cause exposure dose to the ecosystem by emission of beta rays in the hundreds of keV range. Therefore, if these two nuclides can be separated and converted with high efficiency into radioactively unharmful nuclides, this would have a positive effect on disposal safety. One candidate method is to transmute these two nuclides in nuclear reactors into short-lived nuclides or into stable nuclides. For this purpose, it is necessary to evaluate which reactor type is more efficient in burning these two nuclides. In this study, the simulation results of nuclear transmutation of $^{99}Tc$ and $^{129}I$ in light water reactor (PWR), heavy water reactor (CANDU) and fast neutron reactor (SFR, MET-1000) are compared and discussed.

A Study to Evaluate Impervious Area Ratio by Geographic Information Data (지리정보자료에 따른 불투수면적률 산정 결과에 대한 연구)

  • Min Suh Chae;Kyoung Jae Lim;Joong-Hyuk Min;Minji Park;Jichul Ryu;Mijin Lee;Sohyeon Park;Youn Shik Park
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.2
    • /
    • pp.142-152
    • /
    • 2023
  • Infiltration is a process by which precipitation infuses into subsurface soils. The process determines the surface flow and baseflow volume, and it is one of most important hydrological processes regarding nonpoint source pollution management. Therefore, the Ministry of Environment has developed a guideline to determine the impervious area ratio to understand the hydrological process in administrative districts and watersheds. The impervious area ratio can be determined using land use or land cover maps. Three approaches were explored to determine the impervious area ratio in 25 districts in Seoul. The impervious area ratio was determined by employing the Land registration map and Land property data in the first approach, Land property map in the second approach, and Land cover map in the third approach. The ratio ranged from 38.96% to 83.01% in the first approach, 38.98% to 83.02% in the second approach, and 37.62% to 76.63% in the third approach. Although the ranges did not provide any significant differences in the approaches, some districts displayed differences up to 9.48% by the approach. These differences resulted from the fact that the data were land use or land cover, especially in the area of airport, residential complex area, and school sites. In other words, division of the pervious and impervious areas in an individual plot was not allowed in the Land registration map, while it was allowed in the Land cover map. Therefore, it was concluded that there is a need to revise the guideline so that a reasonable impervious area ratio can be determined in the districts.

A Modified grid-based KIneMatic wave STOrm Runoff Model (ModKIMSTORM) (I) - Theory and Model - (격자기반 운동파 강우유출모형 KIMSTORM의 개선(I) - 이론 및 모형 -)

  • Jung, In Kyun;Lee, Mi Seon;Park, Jong Yoon;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.697-707
    • /
    • 2008
  • The grid-based KIneMatic wave STOrm Runoff Model (KIMSTORM) by Kim (1998) predicts the temporal variation and spatial distribution of overland flow, subsurface flow and stream flow in a watershed. The model programmed with C++ language on Unix operating system adopts single flowpath algorithm for water balance simulation of flow at each grid element. In this study, we attempted to improve the model by converting the code into FORTRAN 90 on MS Windows operating system and named as ModKIMSTORM. The improved functions are the addition of GAML (Green-Ampt & Mein-Larson) infiltration model, control of paddy runoff rate by flow depth and Manning's roughness coefficient, addition of baseflow layer, treatment of both spatial and point rainfall data, development of the pre- and post-processor, and development of automatic model evaluation function using five evaluation criteria (Pearson's coefficient of determination, Nash and Sutcliffe model efficiency, the deviation of runoff volume, relative error of the peak runoff rate, and absolute error of the time to peak runoff). The modified model adopts Shell Sort algorithm to enhance the computational performance. Input data formats are accepted as raster and MS Excel, and model outputs viz. soil moisture, discharge, flow depth and velocity are generated as BSQ, ASCII grid, binary grid and raster formats.

Regression Modeling of Water-balance in Watershed (유역(流域) 물 수지(收支)의 회귀모형화(回歸模型化))

  • Kim, Tai Cheol
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.2
    • /
    • pp.324-333
    • /
    • 1983
  • Modeling of longterm runoff is theoritically based on waterbalance analysis. Simplified equation of water balance with rainfall, evapotranspiration and soil moisture storage could be formulated into regression model with variables of rainfall, pan evaporation and previous-month streamflow. The hydrologic response of water shed could be represented lumpedly, qualitatively and deductively by regression coefficients of water-balance regression model. Characteristics of regression modeling of water-balance were summarized as follows; 1. Regression coefficient $b_1$ represents the rate of direct runoff component of precipitation. The bigger the drainage area, the less $b_1$ value. This means that there are more losses of interception, surface detension and transmission in the downstream watershed. 2. Regression coefficient $b_2$ represents the rate of baseflow due to changes of soil moisture storage. The bigger the drainage area and the milder the watershed slope, the bigger b, value. This means that there are more storage capacity of watershed in mild downstream watershed. 3. Regression coefficient $b_3$ represents the rate of watershed evaporation. This depends on the s oil type, soil coverage and soil moisture status. The bigger the drainage area, the bigger $b_3$ value. This means that there are more watershed evaporation loss since more storage of surface and subsurface water would be in down stream watershed. 4. It was possible to explain the seasonal variation of streamflow reasonably through regress ion coefficients. 5. Percentages of beta coefficients what is a relative measure of the importance of rainfall, evaporation and soil moisture storage to month streamflow are approximately 89%, 9% and 11% respectively.

  • PDF