• 제목/요약/키워드: subsurface stress and rectangular patch solution

검색결과 5건 처리시간 0.021초

The Stress Field in a Body Caused by the Tangential Force of a Rectangular Patch on a Semi-Infinite Solid

  • Cho, Yong-Joo;Kim, Tae-Wan;Lee, Mun-Ju
    • KSTLE International Journal
    • /
    • 제2권1호
    • /
    • pp.29-34
    • /
    • 2001
  • The stress field in a body caused by the tangential loading of a rectangular patch on a semi-infinite solid has been solved analytically using a potential function. The validity of the results of this study was preyed by Saint-Venant's principle in the remote region and by the superposition of point loads in the vicinity of the surface.

  • PDF

구 접촉하에서의 피로균열 시작수명에 관한 연구 (Study on the Fatigue Crack Initiation Life Under Spherical Contact)

  • 조용주;김태완;이문주
    • 대한기계학회논문집A
    • /
    • 제25권8호
    • /
    • pp.1269-1276
    • /
    • 2001
  • In case of contact fatigue, the accurate calculation of surface tractions and subsurface stress is essential to the predication of crack initiation life. Surface tractions influencing shear stress amplitude have been obtained by contact analysis based on influence function. Subsurface stress has been obtained by using rectangular patch solutions. In this study, to simulate asperity contact under sliding condition, the tip of asperity was simulated by sphere and to calculate crack initiation life in the substrate, dislocation pileup theory was used.

The Subsurface Stress Field Caused by Both Normal Loading and Tangential Loading

  • Koo Young- Phi;Kim Tae-Wan;Cho Yong-Joo
    • Journal of Mechanical Science and Technology
    • /
    • 제19권11호
    • /
    • pp.1967-1974
    • /
    • 2005
  • The subsurface stress field caused by both normal loads and tangential loads has been evaluated using the rectangular patch solution. The effect of tangential loading on the subsurface stress field has been investigated in detail for both the cylinder-on-cylinder contact and a spur gear teeth contact. For the cylinder-on-cylinder contact, the subsurface stress fields are moved more to the direction of tangential loads and the positions where the maximum stress occur are getting closer to the surface with the increasing tangential loads. The subsurface stress fields of the gear teeth contact are expanded more widely to the direction of tangential loads with the increasing tangential loads. The friction coefficient of a gear teeth contact is low because they are operated in a lubricated condition, and therefore surface tractions in the EHL condition hardly affect on the subsurface stress field.

박용 디젤기관 캠-롤러 접촉부의 응력 해석 (Stress Analysis on the Cam-Roller Contact Parts in a Marine Diesel Engine)

  • 김형자;임우조;조용주;구영필
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권2호
    • /
    • pp.174-180
    • /
    • 2002
  • The subsurface stress field beneath the roller's contacting surface due to the contact pressure in lubricating condition has been calculated. Main purpose of this study in view of engineering is to prove the validity of the numerical profile roller presented by Koo et al. The Love's rectangular patch solution was used to obtain the subsurface stress field. The stress field of the numerical profile roller was compared with the one of the existing dub-off profile roller The analysis results show reduced subsurface stresses for the numerical profile roller.

표면 거칠기가 접촉피로 수명에 미치는 영향 (The Effect of Surface Roughness on the Contact Fatigue Life)

  • 추효준;이상돈;조용주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.1033-1036
    • /
    • 2005
  • The effect of surface roughness on the contact fatigue was investigated in this study. To accomplish this goal, contact analysis based on the influence functions and the rectangular patch solution was performed to obtain the subsurface stress. Mesoscopic multiaxial fatigue criterion is then applied to predict fatigue damage. Suitable counting method and damage rule were used to evaluate the fatigue life of random loading caused by rough surface. As a result of the analysis, relationship between the life and roughness as well as the creack initiation depth was revealed. Below the critical roughness, It is observed that the fatigue life has hardly changed and creack is initiated around the depth at which the maximum shear stress occurs. Different behavior, however, is observed in case that the roughness is above the critical value.

  • PDF