• Title/Summary/Keyword: subsurface cavities

Search Result 27, Processing Time 0.025 seconds

Preliminary Evaluation of Subsurface Cavity and Road Cave-in Potentials Based on FWD Deflections (FWD 처짐량 기반 도로 공동 및 함몰 위험도 평가 기초 연구)

  • Kim, Tae-Woo;Yoon, Jin-Sung;Lee, Chang Min;Baek, Jongeun;Choi, Yeon-Woo
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.59-68
    • /
    • 2017
  • PURPOSES : The objective of this study is to evaluate the potential risk level of road cave-ins due to subsurface cavities based on the deflection basin measured with falling weight deflectometer (FWD) tests. METHODS: Ground penetrating radar (GPR) tests were conducted to detect road cavities. Then FWD tests were conducted on 13 pavement test sections with and without a cavity. FWD deflections and a deflection ratio was used to evaluate the effect of geometry of the cavity and pavement for road cave-in potentials. RESULTS : FWD deflection of cavity sections measured at 60 cm or a closer offset distance to a loading center were 50% greater than more robust sections. The average deflection ratio of the cavity sections to robust sections were 1.78 for high risk level cavities, 1.51 for medium risk level cavities, and 1.16 for low risk level cavities. The relative remaining service life of pavement with a cavity evaluated with an surface curvature index (SCI) was 8.1% for the high level, 21.8% for the medium level, and 89.8% compared to pavement without a cavity. CONCLUSIONS : FWD tests can be applied to detect a subsurface cavity by comparing FWD deflections with and without a cavity measured at 60 cm or a closer offset distance to loading center. In addition, the relative remaining service life of cavity sections based on the SCI can used to evaluate road cave-in potentials.

Time-lapse Resistivity Investigations for Imaging Subsurface Grout during Ground Stabilization

  • Farooq, Muhammad;Park, Sam-Gyu;Kim, Jung-Ho;Song, Young-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.241-244
    • /
    • 2007
  • Cement-grouts are injected into limestone cavities beneath the road in the project area, in order to improve strength and reduce permeability; the extent to which grout has penetrated in cavities need to be monitored in order to determined effectiveness of cement-grout. Geophysical approaches, offer great potential for monitoring the grout injection process in a fast and cost-effective way as well as showing whether the grout has successfully achieved the target. This paper presents the ability of surface electrical resistivity to investigate the verification of the grout placement. In order to image the cement-grout, time-lapse surface electrical resistivity surveys were conducted to compare electrical resistivity images before and after injection. Cement-grout was imaged as anomalies exhibiting low resistivity than the surrounding rocks. In accordance with field monitoring, laboratory study was also designed to monitor the resistivity changes of cement-grout specimens with time-lapse. Time-lapse laboratory measurements indicated that electrical methods are good tool to identify the grouted zone. Pre-and post grouting electrical images showed significant changes in subsurface resistivity at grouted zone. The study showed that electrical resistivity imaging technology can be a useful tool for detecting and evaluating changes in subsurface resistivity due to the injection of the grout.

  • PDF

Laboratory Experiments of a Ground-Penetrating Radar for Detecting Subsurface Cavities in the Vicinity of a Buried Pipe (매설관 주변 지하 공동 탐지를 위한 지하 탐사 레이다의 모의실험)

  • Hyun, Seung-Yeup
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.2
    • /
    • pp.131-137
    • /
    • 2016
  • In this paper, a feasibility on a ground-penetrating radar for detecting subsurface cavities near buried pipes has been investigated. The experimental setup was implemented by employing an impulse ground-penetrating radar system, a xy Cartesian coordinate robot, an underground material filled tank, a metal pipe and a simulated cavity model. In particular, the simulated cavity model was constructed by packing Styrofoam chips and balls, which have both similar electrical properties to an air-filled cavity and a solid shape. Through typical three experiments, B-scan data of the radar have been acquired and displayed as 2-D gray-scale images. According to the comparison of B-scan images, we show that the subsurface cavities near the buried pipes can be detected by using the radar survey.

Application of Geophysical Methods to Cavity Detection at the Ground Subsidence Area (물리탐사 기술의 지반침하지역 공동탐지 적용성 연구)

  • Kim, Chang-Ryol;Kim, Jung-Ho;Park, Young-Soo;Park, Sam-Gyu;Yi, Myeong-Jong;Son, Jeong-Sul;Lim, Heong-Rae;Jeong, Ji-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.376-383
    • /
    • 2005
  • In this study, we conducted geophysical investigations for the organization of integrated geophysical methods to detect underground cavities of ground subsidence area at the field test site, located at Yongweol-ri, Muan-gun. We examined the applicability of geophysical methods such as electrical resistivity, electromagnetic, and microgravity to cavity detection with the aid of borehole survey results. Underground cavities are widely present within the limestone bedrock overlain by the alluvial deposits in the area of the test site where the ground subsidences have occurred in the past. The limestone cavities are mostly filled with groundwater and clays in the test site. Thus, cavities have low electrical resistivity and density compared to the surrounding host bedrock. The results of the study have shown that the zones of low resistivity and density correspond to the zones of the cavities identified in the boreholes at the site, and that the geophysical methods used are very effective to detect underground cavities. Furthermore, we could map the distribution of cavities more precisely with the test results incorporated from the various geophysical methods. It is also important to notice that the microgravity method is a very promising tool since it has rarely used for the cavity detection in korea. Beyond the investigation of underground cavities, the geophysical methods are required to provide useful information for the reinforcement design for the ground subsidence areas. It is, therefore, necessary to develop integrated geophysical technique incorporating different geophysical methods to precisely map underground cavities and image the subsurface of the ground subsidence areas.

  • PDF

Subsurface anomaly detection utilizing synthetic GPR images and deep learning model

  • Ahmad Abdelmawla;Shihan Ma;Jidong J. Yang;S. Sonny Kim
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.203-209
    • /
    • 2023
  • One major advantage of ground penetrating radar (GPR) over other field test methods is its ability to obtain subsurface images of roads in an efficient and non-intrusive manner. Not only can the strata of pavement structure be retrieved from the GPR scan images, but also various irregularities, such as cracks and internal cavities. This article introduces a deep learning-based approach, focusing on detecting subsurface cracks by recognizing their distinctive hyperbolic signatures in the GPR scan images. Given the limited road sections that contain target features, two data augmentation methods, i.e., feature insertion and generation, are implemented, resulting in 9,174 GPR scan images. One of the most popular real-time object detection models, You Only Learn One Representation (YOLOR), is trained for detecting the target features for two types of subsurface cracks: bottom cracks and full cracks from the GPR scan images. The former represents partial cracks initiated from the bottom of the asphalt layer or base layers, while the latter includes extended cracks that penetrate these layers. Our experiments show the test average precisions of 0.769, 0.803 and 0.735 for all cracks, bottom cracks, and full cracks, respectively. This demonstrates the practicality of deep learning-based methods in detecting subsurface cracks from GPR scan images.

Application of Resistivity Technique for Identifying Cavities Near Surface in Karst Area, Muan-gun, South of Korea (무안군 카르스트 지역의 지하공동 탐지를 위한 전기비저항 탐사 기술 적용)

  • Farooq, Muhammad;Park, Sam-Gyu;Song, Young-Soo;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.368-372
    • /
    • 2008
  • This study evaluates the usefulness and capability of surface electrical resistivity technique for identifying the weak zones or subsurface cavities in karst area with limestone formation. Weak zones or cavities near surface can be potentially dangerous and several problems are associated with collapse of roads or buildings accompanied by subsidence phenomena. In this paper, both two and three dimensional resistivity investigation were conducted to investigate subsidence along a road in Yongweol-ri, Muan-gun, South Korea. The results of the resistivity survey using dipole-dipole array provide a clear view of the weathered regolith, the distribution of weak zones or cavities and bedrock. Several low resistivity areas were identified and subsequent drilling led to the discovery of several weak zone or clay-filled underground cavities. The drilling results show excellent correlation with the resistivity images. It is illustrated, the ability of electrical technique to produce high resolution images of subsurface, which are useful for subsidence assessment. Also the results of this study have demonstrated that two and three dimensional electrical resistivity surveys are useful for delineating the subsidence area. Based on resistivity imaging, the map of hazardous zone has been developed.

Analyses of Apparent Resistivity Responses from Near-Surface Cavities (지하천부의 공동에 의한 외견 비저항의 해석)

  • Kim, Hee Joon
    • Economic and Environmental Geology
    • /
    • v.17 no.2
    • /
    • pp.101-107
    • /
    • 1984
  • This paper describes dipole-dipole apparent resistivity responses from near-surface cavities in otherwise homogeneous earth materials. In applying the dipole-dipole resistivity method to the problem of locating and delineating subsurface cavities, it is important to know apparent resistivity responses not only for conductive bodies but also for resistive ones. Dipole-dipole apparent resistivities for these bodies are calculated by the numerical modeling technique using an integral equation solution. The magnitude and pattern of apparent resistivity is highly dependent on the ratio of body resistivity to background resistivity. In conductive bodies, the largest anomaly of apparent resistivity appears at the outside of the body. In resistive bodies, however, the position of the largest anomaly coincides with the location of the body. The field results gathered at Okinawa, Japan in 1978 showed that peak anomalies occurred at the locations of air-filled cavities.

  • PDF

A Case Study of Developing a Subsurface Information and Visualization System Using ArcView (ArcView를 이용한 지하 정보 및 시각화 시스템 구축 사례 연구)

  • Kim, Hyeon-Gyu;Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.4
    • /
    • pp.101-109
    • /
    • 2001
  • In order to develop a spatial information system that can efficiently manage various subsurface data and produce information in a proper form for a user, we established a database of the well cores and built 3-D shapes that visualize the subsurface objects such as wells, ore bodies, tunnels, and mine cavities. We also made analysis tools available for three-dimensional ore bodies constructed here, such as vertical cross-section generator and mass computing tool. This system was developed by coding Avenue, a scripting language incorporated in ArcView, which is a commercial GIS software. Using the system, it is expected that users can make fast and accurate analysis and interpretation through real-time queries and by contemplating various objects in 3-D perspective.

  • PDF

A Time-Lapse Microgravity for Grout Monitoring (그라우팅 전후의 시간차 고정밀 중력탐사)

  • Park, Yeong-Sue;Rim, Hyoung-Rae;Lim, Mu-Taek;Koo, Sung-Bon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.101-106
    • /
    • 2007
  • A time-lapse microgravity survey on a newly widen road at Muan, where limestone cavities are developed, for monitoring the change of the subsurface density distribution before and after grouting. Microgravity monitoring is identified as a quick, easy and cost effective. But, it requires strict data acquisition and quality control due to the differences of conditions at measurements. The survey was carried out two times, that is, October 2005 and September 2006. The data were adjusted for reducing the effects due to the different condition of each survey. The processed data acquired in 2005 and 2006 were inverted into the subsurface density distributions. They show the change and development of density structure during the lapsed time, which implies the effects of grouting.

  • PDF