• Title/Summary/Keyword: substructures

Search Result 289, Processing Time 0.03 seconds

Acoustic Radiation from a Finite-length Shell with Substructures Subjected to an Impulsive Load (부구조물이 있는 유한길이의 쉘 구조물에서의 충격하중에 의한 음향방사)

  • 최성훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.62-67
    • /
    • 1995
  • A method for determining impulsive responses and acoustic radiation for submerged shells of finite length has been presented. The method is a modal-based method, and uses a surface variational principle to obtain data in the frequency domain. The fast Fourier transform technique is used to convert the data to the time domain. The surface pressure responses of a cylindrical shell with endcaps wer compared with those of an infinite shell. It was shown that the surface pressures coincide exactly before any significant reflections from the endcaps occur. Traces of different types of waves were identified from the dispersion relations of the infinite shell. The contributions of flexural and longitudinal waves and these due to the direct radiation from the driving force to the fluid pressure were demonstrated using near-field plots. The exchange of energy between the shell and fluid was examined for shells with and without bulkheads. It was shown that a significant amount of the energy which enters the fluid returns to the shell and most of the energy is dissipated in the shell. It was also shown that the shell with bulkheads radiate significantly more energy into the far-field than the empty shell.

  • PDF

A Study of Pier-Segment Joint for Fabricated Internally Confined Hollow CFT Pier (조립식 내부 구속 중공 CFT 교각을 위한 교각세그먼트 접합부 연구)

  • Won, Deok-Hee;Han, Taek-Hee;Lee, Dong-Jun;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.161-171
    • /
    • 2010
  • Bridges have undergone distinctive development in accordance of the introduction of new materials and structural types. The importance on rapid construction technology is currently attracting more and more attention worldwidely as well as domestically because its effectiveness in reducing the overall construction cost. While a wide ranges of previous researches on rapid construction of super structures are available, the studies on substructures are quite limited. The development of the precast segmental internally confined hollow CFT piers are briefly introduced herein and design formulas are presented for pier segment joints, Also, a extensive parametric studies are carried out for the effect of the constitutive elements of the joints. Finally, the design formulas are verified throughout a series of extensive finite element analyses.

The mass of the high-z (z~1.132) massive galaxy cluster, SPT-CL J2106-5844 using weak-lensing analysis with HST observations

  • Kim, Jinhyub;Jee, Myungkook James;Ko, Jongwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.29.4-30
    • /
    • 2017
  • Korea Astronomy and Space Science Institute We present a weak-lensing study of the galaxy cluster SPT-CL J2106-5844 at z=1.132 discovered in the South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. The cluster is claimed to be the most massive system at z > 1 in the SPT-SZ survey. The inferred mass ($M_{200c}=(1.27{\pm}0.21){\times}10^{15}M_{sun}$) is somewhat unusual at such a high redshift given the current ΛCDM prediction. The mass estimates, however, may be biased because the hydrostatic assumption may not hold when the universe was about 40% of the current age. In this work, we reconstruct the dark matter distribution and measure the mass of this interesting cluster using weak-lensing analysis based on the images from the Advanced Camera for Surveys and Wide Field Camera 3 on-board the Hubble Space Telescope. We find that the mass distribution of the cluster is unimodal with no significant substructures. The centroid of the dark matter agrees with both galaxy luminosity and number density distributions, as well as the hot gas centroid. We confirm that the cluster is indeed extremely massive ($M_{200c}=(1.81{\pm}0.47){\times}10^{15}M_{sun}$) supporting the previous non-lensing measurements. We also discuss the rarity of the cluster in the ΛCDM cosmology, comparing with the expected abundance of similarly massive clusters.

  • PDF

Clinical Experiment Results of Cerec Inlab using Vita9 (VITA VM9 Zirconia powder를 이용한 Cerec inlab의 임상증례에 관하여)

  • Jung, Hyo-Kyung;kim, Jeong-Sook;Lee, Jong-Do
    • Journal of Technologic Dentistry
    • /
    • v.29 no.2
    • /
    • pp.119-128
    • /
    • 2007
  • Although there are many different ways that restorations can be made, it can be said that the biocompatibility of abutment and crown is very important in this experiment. When placed in the actual oral cavity, the differences were obvious. Compared to In-ceram Aluminium, the structure that is obtained after firing reveals a particularly homogeneous distribution of the crystal and glass phase. The In-ceram aluminium system had many problems, such as having weak tensile strength, and having low bonding strength due to the shrinking that occurs after firing. Because of the opaque finish of the metal frame, the two may look similar from the outside, but it is evident that there are differences between using a metal frame and In-ceram. VITA VM9 has been designed as a special ceramic featuring a fine structure or stabilized Zro2 substructures, and so the VITA VM9 excels in its light refraction and reflection behavior, which is similar to natural teeth. It also has outstanding chemical balance, which presents advantages such as considerably reduced accumulation of plaque on the ceramic surface.? This ultimately results in easier care and cleaning for the patient.

  • PDF

A new method to identify bridge bearing damage based on Radial Basis Function Neural Network

  • Chen, Zhaowei;Fang, Hui;Ke, Xinmeng;Zeng, Yiming
    • Earthquakes and Structures
    • /
    • v.11 no.5
    • /
    • pp.841-859
    • /
    • 2016
  • Bridge bearings are important connection elements between bridge superstructures and substructures, whose health states directly affect the performance of the bridges. This paper systematacially presents a new method to identify the bridge bearing damage based on the neural network theory. Firstly, based on the analysis of different damage types, a description of the bearing damage is introduced, and a uniform description for all the damage types is given. Then, the feasibility and sensitivity of identifying the bearing damage with bridge vibration modes are investigated. After that, a Radial Basis Function Neural Network (RBFNN) is built, whose input and output are the beam modal information and the damage information, respectively. Finally, trained by plenty of data samples formed by the numerical method, the network is employed to identify the bearing damage. Results show that the bridge bearing damage can be clearly reflected by the modal information of the bridge beam, which validates the effectiveness of the proposed method.

Prediction of the Dynamic Characteristics of a Bolt-Joint Plates According to Bolting Conditions (볼트 체결 조건에 따른 두 판재의 동적 특성 예측)

  • Hong Sang-joon;Lee DongJin;Yoo Jeonghoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1175-1182
    • /
    • 2005
  • General systems have many substructures assembled at joints. The bolted joint is generally used in assembling the mechanical parts. However, there are no effective modeling methods to analyze the dynamic characteristics of bolt jointed structure using the finite element (FE) analysis, especially in case of large area contact. Moreover, the design methods for the appropriate bolt locations and the number of bolts considering the dynamic characteristics are not guided properly. In this study, a proper modeling method is developed to simulate the dynamic characteristics of a structure with the large interfaced area using the cone frusta method and spring elements. The natural frequencies are also controlled by adjusting the bolt-joint location and the number of bolts considering relative distances in mode shapes at the interface of bolt-jointed plates. The Modeling method and the optimized design method are verified based on the experimental and the FE analysis results.

Conceptual Description of Hierarchical Structure in Discourse (담화 내 계층 구조의 개념 구조적 기술)

  • 구유선
    • Korean Journal of Cognitive Science
    • /
    • v.11 no.3_4
    • /
    • pp.23-32
    • /
    • 2000
  • The distinction between main structure and side structure in discourse which was central to narrative studies has lacked an adequate. formal definition. This study supports the contention that there exists a hierarchical structure between discourse units constituting main structures, substructures, and side structures. The aim of this study is twofold: (j) to present an adequate. formal definition that provides a general identification criterion for distinguishing main structure from substructure and side structure proposed by Kuppevelt, and (jj) to propose conceptual relations representing hierarchical structures in discourse based on Sowa's Conceptual Structure Theory. The proposed conceptual relations which represent hierarchy and pragmatic relations of discourse segments are: DIGR (digression). T-SHFT (topic shift), and FRAM (frame). This s study shows pragmatic functions can be incorporated within CST in a systematic way.

  • PDF

Optimization of Excitation Forces Produced by the Diesel Engine for Vibration Control in Ships (선박에서 진동제어를 위한 디젤엔진 기진력의 최적화)

  • 박정근;정의봉
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1018-1025
    • /
    • 2003
  • The diesel engine is often a serious excitation source in ships. Both the varying cylinder gas forces and the reciprocating and rotating mass forces associated with the crank and the connecting rod mechanism produce ample possibilities for excitation of the engine structure itself, the shafting, the surrounding substructures as well as the hull girder. This paper presents a guide for optimization of excitation forces produced by the marine propulsion 2-stroke diesel engine. The computational program for predicting the excitation forces is developed and applied to 2-stroke in-line engines. The object function is defined as the work done by every cylinder excitation force which is related to the mode shape of the diesel engine system, especially in the torsional vibration of the shafting. As a practical application of the presented method, the crank angle of 7 cylinder 2-stroke engine is optimized to reduce torsional vibration stresses on the shafting. Compared with the regular firing angle, about 60% of the 4th order torsional vibratory stress on the propeller shaft can be reduced by optimizing the crank angle irregularly. The usefulness of the presented optimization method is confirmed by the measurements.

  • PDF

An Improved Substructure Synthesis Method for Unbalance Response Analysis of Rotor Bearing Systems (회전체 베어링계의 불균형 응답 해석을 위한 개선된 부분 구조 합성법)

  • 홍성욱;박종혁
    • Journal of KSNVE
    • /
    • v.6 no.1
    • /
    • pp.71-82
    • /
    • 1996
  • The finite element analysis for rotor bearing systems has been an essential tool for design, identification, and diagnosis of rotating machinery. Among others, the unbalance response analysis is fundamental in the vibration analysis of rotor bearing systems because rotating unbalance is recognized as a common sourve of vibration in rotating machinery. However there still remains a problem in the aspect of computational efficiency for unbalance response analysis of large rotor bearing systems. Gyroscopic terms and local bearing parameters in rotor bearing systems often make matters worse in unbalance response computation due to the complicated dynamic properties such as rotational speed dependency and/or anisotropy. The present paper proposes an efficient method for unbalance responses of multi-span rotor bearing systems. An improved substructure synthesis scheme is introduced which makes it possible to compute unbalance responses of the system by coupling unbalance responses of substructures that are of self adjoint problem with small order matrices. The present paper also suggests a scheme to easily deal with gyroscopic tems and local, coupling or bearing parameters. The proposed method causes no errors even though the computational effort is reduced drastically. The present method is demonstrated through three test examples.

  • PDF

Dynamic Interactions between the Reactor Vessel and the CEDM of the Pressurized Water Reactor (가압경수로 원자로용기와 제어봉 구동장치의 동적 상호작용)

  • Jin, Choon-Eon
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.837-845
    • /
    • 1997
  • The dynamic interactions between the reactor vessel and the control element drive mechanisms (CEDMs) of a pressurized water reactor are studied with the simplified mathematical model. The CEDMs are modeled as multiple substructures having different masses and the reactor vessel as a single degree of freedom system. The explicit equation for the frequency responses of the multiple substructure system are presented for the case of harmonic base excitations. The optimum dynamic characteristics of the CEDMs are presented to reduce the dynamic responses of the reactor vessel. The mathematical model and its response equations are verified by finite element analysis for the detailed model of the reactor vessel and the CEDMs for the harmonic base excitations. It is finally shown that the optimal dynamic characteristics of the CEDM presented can be applicable for the aseismic design.

  • PDF