• Title/Summary/Keyword: substrate spectrum

Search Result 301, Processing Time 0.026 seconds

Inactivation of Brain Succinic Semialdehyde Reductase by o-Phthalaldehyde

  • Choi, Soo-Young;Song, Min-Sun;Lee, Byung-Ryong;Jang, Sang-Ho;Lee, Su-Jin;Park, Jin-Seu;Choe, Joon-Ho;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.28 no.2
    • /
    • pp.112-117
    • /
    • 1995
  • Succinic semialdehyde reductase was inactivated by o-phthalaldehyde. The inactivation followed pseudo-first order kinetics, and the second-order rate constant for the inactivation process was 28 $M^{-1}s^{-1}$ at pH 7.4 and $25^{\circ}C$. The absorption spectrum ($\lambda_{max}$ 337 nm) and fluorescence excitation ($\lambda_{max}$ 340 nm) and fluorescence emission spectra ($\lambda_{max}$ 409 nm) were consistent with the formation of an isoindole derivative in the catalytic site between a cysteine and a lysine residue approximately about 3 $\AA$ apart. The substrate, succinic semialdehyde, did not protect enzymatic activity against inactivation, whereas the coenzyme NADPH protected against o-phthaladehyde induced inactivation of the enzyme. About 1 isoindole group per mol of the enzyme was formed following complete loss of enzymatic activity. These results suggest that the amino acid residues of the enzyme participating in a reaction with o-phthalaldehyde are cysteinyl and lysyl residues at or near the NADPH binding site.

  • PDF

Properties and Preparation of AlNO Multi-layer Thin Films Using DC Magnetron Sputter Method (직류 마그네트론 스퍼터법에 의한 AlNO 복층박막의 제조와 특성)

  • Kim, Hyun-Hoo;Oh, Dong-Hyun;Baek, Chan-Soo;Jang, Gun-Eik;Choi, Dong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.589-593
    • /
    • 2014
  • AlNO multi-layer thin films on aluminum substrates were prepared by DC reactive magnetron sputtering method. $Al_2O_3$/AlNO(LMVF)/AlNO(HMVF)/Al/substrate of 4 multi-layer has been prepared in an Ar and ($N_2+O_2$) gas mixture, and $Al_2O_3$ of top layer is anti-reflection layer on double AlNO(LMVF)/AlNO(HMVF) layers and Al metal of infrared reflection layer. In this study, the roughness and surface properties of AlNO thin films were estimated by field emission scanning electron microscopy(FE-SEM). The grain size of AlNO thin films increased with increasing sputtering power. The composition of thin films has been systematically investigated using electron probe microanalysis(EPMA). The optical properties with wavelength spectrum were recorded by UV-Vis-NIR spectrophotometry at a range of 200~1,500 nm. The absorptance of AlNO films shows the increasing trend with swelling ($N_2+O_2$) gas mixture in HMVF and LMVF deposition. The excellent optical performance showed above 98% of absorptance in visible wavelength region.

Bioactivation of Aromatic Amines by Human CYP2W1, An Orphan Cytochrome P450 Enzyme

  • Eun, Chang-Yong;Han, Song-Hee;Lim, Young-Ran;Park, Hyoung-Goo;Han, Jung-Soo;Cho, Kyoung-Sang;Chun, Young-Jin;Kim, Dong-Hak
    • Toxicological Research
    • /
    • v.26 no.3
    • /
    • pp.171-175
    • /
    • 2010
  • The human genome contains approximately 13 orphan cytochrome P450 (P450, CYP) genes, of which the apparent function or substrate has not been identified. However, they seem to possess their own biological relevance in some tissues or developmental stages. Here, we characterized the heterologously expressed CYP2W1, an orphan P450 enzyme. The recombinant CYP2W1 protein containing a $6{\times}$(His)-tag at Nterminus has been expressed in Escherichia coli and purified. Expression level of CYP2W1 holoenzyme was around 500 nmol P450 holoenzyme per liter culture medium. The reduced CO difference spectrum of CYP2W1 showed a maximum absorption at 449 nm. CYP2W1 indicated the significant induction to bioactivate Trp-P-1, MeIQ, and IQ in E. coli DJ701 tester strain. However, the bioactivation of B[$\alpha$]P, and NNK by CYP2W1 was relatively low. The model structure of CYP2W1 suggested the characteristic P450 folds with the lengths and orientations of the individual secondary elements. The F-G loop is situated on the distal side of heme to accommodate the flexibility of active site of CYP2W1. These studies can provide useful information for the finding of its biological roles and structure-function relationships of an orphan CYP2W1 enzyme.

Improving Efficiencies of DSC by Down-conversion of LiGdF4:Eu (Eu이 도핑된 LiGdF4의 Down-conversion을 이용한 염료감응형 태양전지의 효율 향상)

  • 김현주;송재성;김상수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.323-328
    • /
    • 2004
  • Down-conversion of Eu$^{3+}$ doped LiGdF$_4$ (LGF) for increasing the cell efficiency on dye-sensitized Ti $O_2$ solar cells has been studied. The dye sensitized solar cell (DSC) consisting of mesoporous Ti $O_2$ electrode deposited on transparent substrate, an electrolyte containing I$^{[-10]}$ /I$_3$$^{[-10]}$ redox couple, and Pt counter electrode is a promising alternative to the inorganic solar cell. The structure of DSC is basically a sandwich type, viz., FTO glass/Ru-red dye-absorbed Ti $O_2$/iodine electrolyte/sputtered Pt/FTO glass. The cell without down converter had open circuit potential of approximately 0.66 Volt, the short circuit photocurrent density of 1.632 mA/$\textrm{cm}^2$, and fill factor of about 50 % at the excitation wavelength of 550 nm. In addition, 5.6 mW/$\textrm{cm}^2$ incident light intensity beam was used as a light source. From this result, the calculated monochromatic efficiency at the wavelength of 550 nm of this cell was about 9.62 %. The incident photon to current conversion efficiency (IPCE) of N3 used as a dye in this work is about 80 % at around 590 nm and 610 nm, which is the emission spectrum of Eu$^{3+}$ doped LGF, results in efficiency increasing of DSC.C.

Growth and characterization of ZnIn$_2$S$_4$ single crystal thin film using Hot Wall Epitaxy method (Hot Wall Epitaxy (W)에 의한 ZnIn$_2$S$_4$ 단결정 박막 성장과 특성)

  • 윤석진;홍광준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.266-272
    • /
    • 2002
  • The stochiometric mixture of evaporating materials for the ZnIn$_2$S$_4$ single crystal thin film was prepared from horizontal furnace. To obtain the ZnIn$_2$S$_4$ single crystal thin film, ZnIn$_2$S$_4$ mixed crystal was deposited on throughly etched semi-insulating GaAs(100) in the Hot Wall Epitaxy(HWE) system. The source and substrate temperature were 610 $^{\circ}C$ and 450 $^{\circ}C$, respectively and the growth rate of the ZnIn$_2$S$_4$ single crystal thin film was about 0.5 $\mu\textrm{m}$/hr. The crystalline structure of ZnIn$_2$S$_4$ single crystal thin film was investigated by photo1uminescence and double crystal X-ray diffraction(DCXD) measurement. The carrier density and mobility of ZnIn$_2$S$_4$ single crystal thin film measured from Hall effect by van der Pauw method are 8.51${\times}$10$\^$17/ cm$\^$-3/, 291 $\textrm{cm}^2$/V$.$s at 293 $^{\circ}$K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c - axis of the ZnIn$_2$S$_4$ single crystal thin film, we have found that the values of spin orbit splitting ΔSo and the crystal field splitting ΔCr were 0.0148 eV and 0.1678 eV at 10 $^{\circ}$K, respectively. From the photoluminescence measurement of ZnIn$_2$S$_4$ single crystal thin film, we observed free excition (E$\_$X/) typically observed only in high quality crystal and neutral donor bound exciton (D$^{\circ}$,X) having very strong peak intensity. The full width at half maximum and binding energy of neutral donor bound excition were 9 meV and 26 meV, respectively. The activation energy of impurity measured by Haynes rule was 130 meV.

  • PDF

Expression, Purification and Properties of Shikimate Dehydrogenase from Mycobacterium Tuberculosis

  • Zhang, Xuelian;Zhang, Shunbao;Hao, Fang;Lai, Xuhui;Yu, Haidong;Huang, Yishu;Wang, Honghai
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.624-631
    • /
    • 2005
  • Tuberculosis, caused by Mycobacterium tuberculosis, continues to be one of the main diseases to mankind. It is urgent to discover novel drug targets for appropriate antimicrobial agents against this human pathogen. The shikimate pathway is onsidered as an attractive target for the discovery of novel antibiotics for its essentiality in bacteria and absence in mammalian cells. The Mycobacterium tuberculosis aroE-encoded shikimate dehydrogenase was cloned, expressed and purified. Sequence alignment analysis shows that shikimate dehydrogenase of Mycobacterium tuberculosis exhibit the pattern of G-X-(N/S)-V-(T/S)-X-PX-K, which is highly conserved within the shikimate dehydrogenase family. The recombinant shikimate dehydrogenase spectrum determined by CD spectroscopy showed that the percentages for $\alpha$-helix, $\beta$-sheet, $\beta$-turn, and random coil were 29.2%, 9.3%, 32.7%, and 28.8%, respectively. The enzymatic characterization demonstrates that it appears to be fully active at pH from 9.0 to 12, and temperature $63^{\circ}C$. The apparent Michaelis constant for shikimic acid and $NADP^+$ were calculated to be about $29.5\;{\mu}M$ and $63\;{\mu}M$. The recombinant shikimate dehydrogenase catalyzes the substrate in the presence of $NADP^+$ with an enzyme turnover number of $399\;s^{-1}$. Zymological studies suggest that the cloned shikimate dehydrogenase from M. tuberculosis has a pretty activity, and the work should help in the discovery of enzyme inhibitors and further of possible antimicrobial agents against Mycobacterium tuberculosis.

Purification of Glucose Oxidase by Affinity Chromatography and Its Characterization (친화성 크로마토그래피를 이용한 글루코오스 옥시다아제의 정제와 효소특성)

  • Ko Jung Hwan;Byun Si Myung
    • Journal of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.165-174
    • /
    • 1979
  • A purification technique of glucose oxidase was developed. Using the gluconyl-${\omega}$-aminohexyl Sepharose affinity chromatography, it was partially purified 14.6 folds with 79.7% yield. With the combination of the affinity chromatography and Sepharose 6B gel filtration, the enzyme was purified 27.2 folds from the broth with 74.1% yield. The final purified preparation showed 90.83 U of glucose oxidase activity per mg of protein and a single band by 7% polyacrylamide gel electrophoresis. The absorption spectrum and substrate specificity of the enzyme were studied and the fianal preparation showed the optimal pH between 5.6 and 6.0, the optimal temperature at $40^{\circ}C$, $8.5{\times}10^{-3}M$ of $K_m$ for D-glucose, and 3.43 kcal/mole of the activation energy.

  • PDF

The study on photoreflectance characteristics of the $Al_xGa_{1-x}As$ epilayer grown by MBE method (MBE 법으로 성장시킨 $Al_xGa_{1-x}As$ 에피층의 Photoreflectance 특성에 관한 연구)

  • 이정렬;김인수;손정식;김동렬;배인호;김대년
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.341-347
    • /
    • 1998
  • We analyzed photoreflectance (PR) characterization of the $Al_xGa_{1-x}As$ epilayer grown by molecular beam epitaxy (MBE) method. The band-gap energy $(E_0)$ satisfying low power Franx-Keldysh (LPFK) due to GaAs buffer layer is 1.415 eV, interface electricall field $(E_i)$ is 1.05$\times$$10^4$V/cm, carrier concentration (N) is $1.3{\times}10^{15}\textrm{cm}^{-3}$. In PR spectrum intensity analysis at 300 K the $A^*$ peak below $(E_0)$ signal is low and distorted because of residual impurity in sample growth. The trap characteristic time ${\tau}_i$ of GaAs buffer layer is about 0.086 ms, and two superposed PR signal near 1.42eV consist of the third derivative signal of chemically eteched GaAs substrate and Franz-Keldysh oscillation (FKO) signal due to GaAs buffer layer.

  • PDF

Thin Film Transistor Characteristics with ZnO Channel Grown by RF Magnetron Sputtering (RF Magnetron Sputtering으로 증착된 ZnO의 증착 특성과 이를 이용한 Thin Film Transistor특성)

  • Kim, Young-Woong;Choi, Duck-Kyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.3
    • /
    • pp.15-20
    • /
    • 2007
  • Low temperature processed ZnO-TFTs on glass below $270^{\circ}C$ for plastic substrate applications were fabricated and their electrical properties were investigated. Films in ZnO-TFTs with bottom gate configuration were made by RF magnetron sputtering system except for $SiO_2$ gate oxide deposited by ICP-CVD. ZnO channel films were grown on glass with various Ar and $O_2$ flow ratios. All of the fabricated ZnO-TFTs showed perfectly the enhancement mode operation, a high optical transmittance of above 80% in visible ranges of the spectrum. In the ZnO-TFTs with pure Ar process, the field effect mobility, threshold voltage, and on/off ratio were measured to be $1.2\;cm^2/Vs$, 8.5 V, and $5{\times}10^5$, respectively. These characteristic values are much higher than those of the ZnO-TFTs of which ZnO channel layers were processed with additional $O_2$ gas. In addition, ZnO-TFT with pure Af process showed smaller swing voltage of 1.86v/decade compared to those with $Ar+O_2$ process.

  • PDF

NMR Signal Assignments of Human Adenylate Kinase 1 (hAK1) and its R138A Mutant (hAK1R138A)

  • Kim, Gilhoon;Chang, Hwanbong;Won, Hoshik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.2
    • /
    • pp.56-60
    • /
    • 2016
  • Adenylate kinase (AK) enzyme which acts as the catalyst of reversible high energy phosphorylation reaction between ATP and AMP which associate with energetic metabolism and nucleic acid synthesis and signal transmission. This enzyme has three distinct domains: Core, AMP binding domain (AMPbd) and Lid domain (LID). The primary role of AMPbd and LID is associated with conformational changes due to flexibility of two domains. Three dimensional structure of human AK1 has not been confirmed and various mutation experiments have been done to determine the active sites. In this study, AK1R138A which is changed arginine[138] of LID domain with alanine[138] was made and conducted with NMR experiments, backbone dynamics analysis and mo-lecular docking dynamic simulation to find the cause of structural change and substrate binding site. Synthetic human muscle type adenylate kinase 1 (hAK1) and its mutant (AK1R138A) were re-combinded with E. coli and expressed in M9 cell. Expressed proteins were purified and finally gained at 0.520 mM hAK1 and 0.252 mM AK1R138A. Multinuclear multidimensional NMR experiments including HNCA, HN(CO)CA, were conducted for amino acid sequence analysis and signal assignments of $^1H-^{15}N$ HSQC spectrum. Our chemical shift perturbation data is shown LID domain residues and around alanine[138] and per-turbation value(0.22ppm) of valine[179] is consid-ered as inter-communication effect with LID domain and the structural change between hAK1 and AK1R138A.