• Title/Summary/Keyword: substrate specificity.

Search Result 380, Processing Time 0.023 seconds

Substrate Specificity of UL97 Protein Kinase from Human Cytomegalovirus using Spot Assay (Spot Assay를 통한 Human Cytomegalovirus의 UL97 단백질 인산화 효소의 기질 특이성)

  • Baek, Moon-Chang
    • YAKHAK HOEJI
    • /
    • v.50 no.4
    • /
    • pp.268-271
    • /
    • 2006
  • Protein kinase UL97 is an unusual protein kinase that can phosphorylate nucleoside analogs as well as protein/peptide. Previously we found a H2B-derived peptide, KESYSVYVYKV and reported that the P+5 position (K) is important. To further understand the substrate specificity at the P+5 position, we introduced spot assay system and showed that a peptide containing K residue among other amino acids at the P+5 position is the best substrate. Also other residues such as M, I, L, or G are good enough to be substrate of UL97. This result may aid the discovery of a new antiviral inhibitor.

Analysis on the substrate specificity and inhibition effect of Brassica oleracea glutathione S-Transferase (양배추 유래의 글루타티온 전달효소의 기질 특이성 및 저해 효과 분석)

  • Park, Hee-Joong;Lee, Hee-Jin;Kong, Kwang-Hoon
    • Analytical Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.228-234
    • /
    • 2009
  • To gain further insight into herbicide detoxification of plant, we purified a glutathione S-transferase from Brassica oleracea (BoGST) and studied its substrate specificity towards several xenobiotic compounds. The BoGST was purified to electrophoretic homogeneity with approximately 10% activity yield by DEAE-Sephacel and GSHSepharose column chromatography. The molecular weight of the BoGST was determined to be approximately 23,000 by SDS-polyacrylamide gel electrophoresis and 48,000 by gel chromatography, indicating a homodimeric structure. The activity of the BoGST was significantly inhibited by S-hexyl-GSH and S-(2,4-dinitrophenyl)GSH. The substrate specificity of the BoGST displayed high activities towards CDNB, a general GST substrate and ethacrynic acid. It also exhibited GSH peroxidase activity toward cumene hydroperoxide.

Identification of Substrate Specificity Determinant of Achromobacter Protease I (API) and Catalytic Activity of Mutant D225E for Ornithine Substrate (Achromobacter Protease I (API)의 기질특이성 결정기의 동정과 변이체[D225E]의 Ornithine 기질에 대한 촉매활성)

  • Lim, Seong-Il;Kwon, Oh-Jin;Choi, Cheong
    • Applied Biological Chemistry
    • /
    • v.40 no.3
    • /
    • pp.189-195
    • /
    • 1997
  • The structural basis of Iysine specificity of Achromobacter protease I (API) was investigated by means of site-directed mutagenesis. The precursor protein in which Glu190, one of the two candidates for determining Iysine specificity, was substituted by glutamine, aspartic acid or leucine was processed autocatalytically to attaln full pretense activity with lysine specificity. The substitution of the other candidate, Asp225, for asparagine or leucine produced no mature active forms of pro-API. The precursor protein of the mutant D225E slowly matured autocatalytically. The lysylendopeptidase activity of the mature D225E was 0.25% of that of native API, and this reduced activity is mainly due to a decrease in the affinity of the enzyme for lysine. These results suggest that Asp225 plays a critical rol in restricted substrate specificity as a lysylendopeptidase. However, D225E exhibited no measurable activity for synthetic ornithine substrate. Since the hydroxyl group of Ser194 in this mutant retained essentially the same reactivity to DFP or PMSF as that in native API, it can be noted that a methylene unit longer side chain of residue 225 is not compensated by a methylene unit shorter side chain at subsite P1 in the bound substrate.

  • PDF

Active-Site Mutants of Human Glutathione S-Transferase P1-1: Effects of the Mutations on Substrate Specificity and Inhibition Characteristics

  • Park, Hee-Joong;Yoon, Suck-Young;Kong, Kwang-Hoon
    • BMB Reports
    • /
    • v.31 no.4
    • /
    • pp.399-404
    • /
    • 1998
  • In order to gain further insight on the relationship between structure and function of glutathione S-transferase (GST), the six active-site mutants, R13T, K44T, Q51A, Q64A, S65A, and D98A, of human GST P1-1 were expressed in Escherichia coli and purified to electrophoretic homogeneity by affinity chromatography on immobilized GSH. The active-site mutants showed marked differences in substrate specificity. The substitution of Gln51 with threonine resulted in a drastic decrease in the specific activities to <10% of the wild-type value. The substitution of Arg13 with threonine resulted in more decreased specific activity toward cumene hydroperoxide and in the $I_{50}$ values of S-(2,4-dinitrophenyl) glutathione and benanstatin A. These results suggest that the substitution of Arg13 with threonine changes the conformation of the active site to increase the affinity for the product or electrophilic substrate. Lys44 seems to be in the vicinity of the H-site of hGST P1-1 or may contribute to some extents to the electrophile binding.

  • PDF

Substrate and Inhibitor Specificities of Esterase in Lucilia illustris Meigen (연두금파리 Esterase의 기질 및 억제제 특이성에 관한 연구)

  • 유종명;박천배이형철
    • The Korean Journal of Zoology
    • /
    • v.39 no.2
    • /
    • pp.190-197
    • /
    • 1996
  • The optimal conditions and substrate specificity of whole body esterase (EST) activity, effects of inhibitors (Eserine, Paraoxon, p-HMB, DDVP, DFP) on the enzyme, and ontogenv of the isozymes were determined in Lucilio ilfustris Meisen. The optimal temperature was $45^{\circ}C$ regardless of kind of reacted substrate, $\alpha-naphthyl$ acetate $(\alpha-Nal,$ a.naphthvl butylate $(\alpha-N),$ and Pnaphthyl acetate $(\beta-Na),$ but the optimal pH showed some regioselectivitv to naphthvl group of the esters; PH 7.0 for Iform, pH 7.5 for a-form. The maximum reaction rate was recorded at about 2.5 $\times$ 10's M of PNa and etNa, but 1.0 $\times$ 10'S M of $\alpha-Nb.$ Among the five EST inhibitors tested, DDVP was the most powerful. However, distinction of the relative specificity of inhibitors between three body parts, head, thorax, and abdomen, was shouts, representing differences in the distribution and activity of isozvmes. Of 12 carboxyl-esterases (CE), 8 cholinesterases (ChE) and 2 arvlesterases (ArE) identified based on their inhibitor specificity throughout the development, two larval and prepupal stage specific ChEs, no pupal specific, and 2 CEs.2ChEs. and one ArE adult specific isozvmes were confirmed.

  • PDF

Substrate Ground State Binding Energy Concentration Is Realized as Transition State Stabilization in Physiological Enzyme Catalysis

  • Britt, Billy Mark
    • BMB Reports
    • /
    • v.37 no.5
    • /
    • pp.533-537
    • /
    • 2004
  • Previously published kinetic data on the interactions of seventeen different enzymes with their physiological substrates are re-examined in order to understand the connection between ground state binding energy and transition state stabilization of the enzyme-catalyzed reactions. When the substrate ground state binding energies are normalized by the substrate molar volumes, binding of the substrate to the enzyme active site may be thought of as an energy concentration interaction; that is, binding of the substrate ground state brings in a certain concentration of energy. When kinetic data of the enzyme/substrate interactions are analyzed from this point of view, the following relationships are discovered: 1) smaller substrates possess more binding energy concentrations than do larger substrates with the effect dropping off exponentially, 2) larger enzymes (relative to substrate size) bind both the ground and transition states more tightly than smaller enzymes, and 3) high substrate ground state binding energy concentration is associated with greater reaction transition state stabilization. It is proposed that these observations are inconsistent with the conventional (Haldane) view of enzyme catalysis and are better reconciled with the shifting specificity model for enzyme catalysis.

Computational Approach for the Analysis of Post-PKS Glycosylation Step

  • Kim, Ki-Bong;Park, Kie-Jung
    • Genomics & Informatics
    • /
    • v.6 no.4
    • /
    • pp.223-226
    • /
    • 2008
  • We introduce a computational approach for analysis of glycosylation in Post-PKS tailoring steps. It is a computational method to predict the deoxysugar biosynthesis unit pathway and the substrate specificity of glycosyltransferases involved in the glycosylation of polyketides. In this work, a directed and weighted graph is introduced to represent and predict the deoxysugar biosynthesis unit pathway. In addition, a homology based gene clustering method is used to predict the substrate specificity of glycosyltransferases. It is useful for the rational design of polyketide natural products, which leads to in silico drug discovery.

Substrate Specificity of Protein Kinase UL97, an antiviral target, on Mutant Peptide Substrates Derived from a Peptide, KESYSVYVYKV (KESYSVYVYKV로부터 변형된 펩타이드 기질을 이용한 항바이러스제의 타깃이 되는 UL97 단백질 인산화 효소의 기질 특이성)

  • Baek, Moon-Chang
    • YAKHAK HOEJI
    • /
    • v.52 no.6
    • /
    • pp.466-470
    • /
    • 2008
  • Human cytomegalovirus expresses an unusual protein kinase UL97, a member of ${H_V}{U_L}$ family of protein kinase. UL97 can phosphorylate nucleoside analogs such as ganciclovir as well as protein/peptide. It has previously been reported that UL97 is able to phosphorylate a KESYSVYVYKV peptide and that P+5 position (K) is important. We examined the extent of contribution of other positions (P-4 through P+6) of the peptide to be substrate of UL97 using alanine substituted peptides (Ala scanning) and deleted peptides. The result suggested that the E (P-2) is negative effect and P+5 (K) is still important. The peptide YSVYVYK is the shortest substrate enough to show high activity, which could be a starting point to develop peptidomimetic drug. This study would give important information to deeply understand the substrate specificity of UL97 and develop an antiviral drug using the small peptide identified here.

Altered sugar donor specificity and catalytic activity of pteridine glycosyltransferases by domain swapping or site-directed mutagenesis

  • Kim, Hye-Lim;Kim, Ae Hyun;Park, Mi Bi;Lee, Soo-Woong;Park, Young Shik
    • BMB Reports
    • /
    • v.46 no.1
    • /
    • pp.37-40
    • /
    • 2013
  • CY-007 and CY-049 pteridine glycosyltransferases (PGTs) that differ in sugar donor specificity to catalyze either glucose or xylose transfer to tetrahydrobiopterin were studied here to uncover the structural determinants necessary for the specificity. The importance of the C-terminal domain and its residues 218 and 258 that are different between the two PGTs was assessed via structure-guided domain swapping or single and dual amino acid substitutions. Catalytic activity and selectivity were altered in all the mutants (2 chimeric and 6 substitution) to accept both UDP-glucose and UDP-xylose. In addition, the wild type activities were improved 1.6-4.2 fold in 4 substitution mutants and activity was observed towards another substrate UDP-N-acetylglucosamine in all the substitution mutants from CY-007 PGT. The results strongly support essential role of the C-terminal domain and the two residues for catalysis as well as sugar donor specificity, bringing insight into the structural features of the PGTs.

Optimal Conditions and Substrate Specificity for Trehalose Production by Resting Cells of Arthrobacter crystallopoietes N-08

  • Seo, Yi-Seul;Shin, Kwang-Soon
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.357-363
    • /
    • 2011
  • Recently, we found that Arthrobacter crystallopoietes N-08 isolated from soil directly produces trehalose from maltose by a resting cell reaction. In this study, the optimal set of conditions and substrate specificity for the trehalose production using resting cells was investigated. Optimum temperature and pH of the resting cell reaction were $55^{\circ}C$ and pH 5.5, respectively, and the reaction was stable for two hours at $37{\sim}55^{\circ}C$ and for one hour at the wide pH ranges of 3~9. Various disaccharide substrates with different glycosidic linkages, such as maltose, isomaltose, cellobiose, nigerose, sophorose, and laminaribiose, were converted into trehalose-like spots in thin layer chromatography (TLC). These results indicated broad substrate specificity of this reaction and the possibility that cellobiose could be converted into other trehalose anomers such as ${\alpha},{\beta}$- and ${\beta},{\beta}$-trehalose. Therefore, the product after the resting cell reaction with cellobiose was purified by ${\beta}$-glucosidase treatment and Dowex-1 ($OH^-$) column chromatography and its structure was analyzed. Component sugar and methylation analyses indicated that this cellobiose-conversion product was composed of only non-reducing terminal glucopyranoside. MALDI-TOF and ESI-MS/MS analyses suggested that this oligosaccharide contained a non-reducing disaccharide unit with a 1,1-glucosidic linkage. When this disaccharide was analyzed by $^1H$-NMR and $^{13}C$-NMR, it gave the same signals with ${\alpha}$-D-glucopyranosyl-(1,1)-${\alpha}$-D-glucopyranoside. These results suggest that cellobiose can be converted to ${\alpha},{\alpha}$-trehalose by the resting cells of A. crystallopoietes N-08.