Browse > Article
http://dx.doi.org/10.5483/BMBRep.2013.46.1.147

Altered sugar donor specificity and catalytic activity of pteridine glycosyltransferases by domain swapping or site-directed mutagenesis  

Kim, Hye-Lim (School of Biological Sciences, Inje University)
Kim, Ae Hyun (School of Biological Sciences, Inje University)
Park, Mi Bi (School of Biological Sciences, Inje University)
Lee, Soo-Woong (Advanced Research Center for Multiple Myeloma, College of Medicine, Inje University)
Park, Young Shik (School of Biological Sciences, Inje University)
Publication Information
BMB Reports / v.46, no.1, 2013 , pp. 37-40 More about this Journal
Abstract
CY-007 and CY-049 pteridine glycosyltransferases (PGTs) that differ in sugar donor specificity to catalyze either glucose or xylose transfer to tetrahydrobiopterin were studied here to uncover the structural determinants necessary for the specificity. The importance of the C-terminal domain and its residues 218 and 258 that are different between the two PGTs was assessed via structure-guided domain swapping or single and dual amino acid substitutions. Catalytic activity and selectivity were altered in all the mutants (2 chimeric and 6 substitution) to accept both UDP-glucose and UDP-xylose. In addition, the wild type activities were improved 1.6-4.2 fold in 4 substitution mutants and activity was observed towards another substrate UDP-N-acetylglucosamine in all the substitution mutants from CY-007 PGT. The results strongly support essential role of the C-terminal domain and the two residues for catalysis as well as sugar donor specificity, bringing insight into the structural features of the PGTs.
Keywords
Domain swapping; Pteridine glycosyltransferase; Site-directed mutagenesis; Substrate specificity; Tetrahydrobiopterin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, H.-L., Kim, D. H., Lee, Y. K., Park, S. O., Lee, Y.-W., Kwon, O.-S. and Park, Y. S. (2010) An enzymatic method to distinguish tetrahydrobiopterin from oxidized biopterins using UDP-glucose:tetrahydrobiopterin glucosyltransferase. Anal. Biochem. 397, 79-83.   DOI   ScienceOn
2 Lee, Y. G., Kim, A. H., Park, M. B., Kim, H. L., Lee, K. H. and Park, Y. S. (2010) Molecular cloning of cyanobacterial pteridine glycosyltransferases that catalyze the transfer of either glucose or xylose to tetrahydrobiopterin. Appl. Environ. Microbiol. 76, 7658-7661.   DOI   ScienceOn
3 Ruane, K. M, Davies G. J. and Martinez-Fleites C. (2008) Crystal structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. Proteins 73, 784-787.   DOI   ScienceOn
4 Martinez-Fleites, C., Proctor, M., Roberts, S., Bolam, D. N., Gilbert, H. J. and Davies, G. J. (2006) Insights into the synthesis of lipopolysaccharide and antibiotics through the structures of two retaining glycosyltransferases from family GT4. Chem. Biol. 13, 1143-1152.   DOI   ScienceOn
5 Arnold, K., Bordoli, L., Kopp, J. and Schwede, T. (2006). The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics 22, 195-201.   DOI   ScienceOn
6 Kabsch, W. and Sander, C. (1983) Dictionary of protein secondary structure: pattern recognition of hydrogenbonded and geometrical features. Biopolymers 22, 2577- 2637.   DOI   ScienceOn
7 Gouet, P., Courcelle, E., Stuart, D. I. and Metoz, F. (1999) ESPript: multiple sequence alignments in PostScript. Bioinformatics 15, 305-308.   DOI   ScienceOn
8 Hansen, E. H., Osmani, S. A., Kristensen, C., Møller, B. L. and Hansen, J. (2009) Substrate specificities of family 1 UGTs gained by domain swapping. Phytochem. 70, 473-482.   DOI   ScienceOn
9 Chung, H. J., Kim, Y.-A., Kim, Y. J., Choi, Y. K., Hwang, Y. K. and Park, Y. S. (2000) Purification and characterization of UDP-glucose: tetrahydrobiopterin glucosyltransferase from Synechococcus sp. PCC 7942. Biochim. Biophys. Acta 1524, 183-188.   DOI   ScienceOn
10 Werner, E. R., Blau, N. and Thöny, B. (2011) Tetrahydrobiopterin: biochemistry and pathophysiology. Biochem. J. 438, 397-414.   DOI
11 Lairson, L. L., Henrissat, B., Davies, G. J. and Withers, S. G. (2008) Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77, 521-555.   DOI   ScienceOn
12 Truman, A. W., Dias, M. V., Wu, S., Blundell, T. L., Huang, F. and Spencer, J. B. (2009) Chimeric glycosyltransferases for the generation of hybrid glycopeptides. Chem. Biol. 16, 676-685.   DOI   ScienceOn
13 Park, S. H., Park, H. Y., Sohng, J. K., Lee, H. C., Liou, K., Yoon, Y. J. and Kim, B. G. (2009) Expanding substrate specificity of GT-B fold glycosyltransferase via domain swapping and high-throughput screening. Biotechnol. Bioeng. 102, 988-994.   DOI   ScienceOn
14 Palcic, M. M. (2011) Glycosyltransferases as biocatalysts. Curr. Opin. Chem. Biol. 15, 226-233.   DOI   ScienceOn
15 Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K. and Pease, L. R. (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51-59.   DOI   ScienceOn