• 제목/요약/키워드: substrate material

검색결과 3,184건 처리시간 0.027초

안테나의 주파수 특성에 관한 연구 (Frequency Agile Properties of Microstrip Antenna Using Quartz)

  • 윤창진;하용만;황현석;송준태
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.715-718
    • /
    • 2002
  • This paper investigated that resonant frequencies of microstrip patch antenna were agile when piezoelectric materials were used as the antenna substrates. When the bias is applied on them, thickness of the substrate is varied according. to the piezoelectric phenomenon. The microstrip patch antenna using Quartz substrate was fabricated and designed by Ensemble v 7.0 simulator. We fabricated the microstrip antennas using Quartz(Y-cut) as its substrate. When the operating frequencies of the microstrip antenna were 7.045GHz, 7.773GHz 8.18GHz the frequency shifts versus electric field, Emax=4[kV/cm], were 21MHz, 26MHz and 28MHz, respectively.

  • PDF

부상응고법에 의한 실리콘 응고에 관한 연구 (A study on solidification of silicon by floating technique)

  • 이근희;이진형
    • 한국결정성장학회지
    • /
    • 제10권1호
    • /
    • pp.30-35
    • /
    • 2000
  • 부상응고법은 액상 받침 재료 위에 용융 재료를 띄워서 응고시키는 방법으로 판유리 제조가 대표적이며, 이러한 방법을 이용하여 Si 판재를 얻기 위한 실험을 하였다. 본 연구에서는 액상받침재료에 요구되는 물리 화학적인 성질을 고려하여 3원계 산화물 상태도를 조사한 후, 적절한 액상받침재료로 50 wt% $SiO_2$- 2l wt% $A1_2$$O_3$-29 wt% MnO를 이용하였다. 실험결과 본 연구에서 이용한 받침재료는 온도와 밀도, Si의 반응성 면에서 적절한 성질을 나타내었으나, 유동도 및 계면 장력면에서 문제점을 나타내었다.

  • PDF

내장형 수동소자의 제조를 위한 포토 이미징 후막리소그라피 기술 (Photo-imageable Thick-Film Lithography Technology for Embedded Passives Fabrication)

  • 임종우;김효태;김종희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.303-303
    • /
    • 2007
  • Photo-imageable thick-film lithography technology was developed for the fabrication of embedded passives such as inductors and capacitors. In this study, photo-imageable dielectric and conductor pastes have apoted a negative type. Sodalime glass wafer, alumina substrate and zero-shrinkage LTCC green tapes were used as substrates. In result, The lithographic patterns were designed as lines and spaces for conductor material, or via-holes for ceramic, LTCC, materials. The scattering and reflection of UV-beam on the substrate had negative effects on fine patterning. The patterning performance was varied with the exposing and developing process conditions, and also varied with the substrate materials. Fine resolution of less then $50/50{\mu}m$ in line and space was obtained, which is difficult in screen printing method.

  • PDF

RF 출력이 ZnO 박막의 전기·광학적 특성에 미치는 영향 (Effect of RF Powers on the Electro·optical Properties of ZnO Thin-Films)

  • 신동휘;변창섭;김선태
    • 한국재료학회지
    • /
    • 제22권10호
    • /
    • pp.508-512
    • /
    • 2012
  • ZnO thin films were grown on a sapphire substrate by RF magnetron sputtering. The characteristics of the thin films were investigated by ellipsometry, X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL), and Hall effect. The substrate temperature and growth time were kept constant at $200^{\circ}C$ at 30 minutes, respectively. The RF power was varied within the range of 200 to 500 W. ZnO thin films on sapphire substrate were grown with a preferred C-axis orientation along the (0002) plan; X-ray diffraction peak shifted to low angles and PL emission peak was red-shifted with increasing RF power. In addition, the electrical characteristics of the carrier density and mobility decreased and the resistivity increased. In the electrical and optical properties of ZnO thin films under variation of RF power, the crystallinity improved and the roughness increased with increasing RF power due to decreased oxygen vacancies and the presence of excess zinc above the optimal range of RF power. Consequently, the crystallinity of the ZnO thin films grown on sapphire substrate was improved with RF sputtering power; however, excess Zn resulted because of the structural, electrical, and optical properties of the ZnO thin films. Thus, excess RF power will act as a factor that degrades the device characteristics.

RF-MSP에 의한 LiCoO$_2$박막전극의 형성에 관한 연구 (The Study of formation of LiCoO$_2$thin film electrode by RF-MSP)

  • 김상필;이우근;김익수;하홍주;박정후;조정수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1995년도 추계학술대회 논문집
    • /
    • pp.167-170
    • /
    • 1995
  • LiCoO$_2$is a electrode material of Li ion Cell which is expected as the cell with a very high electric charge density. The recent study is mainly to focused on a high power secondary cell. If very thin Li ion Cell can be made in the scale of IC substrate it can be a electric souse in IC chip , micro machine or very thin electrical display etc. LiCoO$_2$thin film can be made by CVD, Laser ablation, E-Beam, ton Beam process, sputtering etc. But to make the material with a high quality for a cell is difficult as the electrode in cell have the fitable ratio in components and a lattice structure of bulk etc. In this study, LiCoO$_2$is made by R.F magnetron sputtering with the variance of substrate temperature and oxygen partial pressure etc. In the substrate temperature of 600$^{\circ}C$ and the oxygen rate of 10%, we can acquire the good thin film LiCoO$_2$compared wish a bulk material.

  • PDF

Synthesis of Li2PtO3 Thin Film Electrode by an Electrostatic Spray Deposition Technique

  • Oh, Heung-Min;Kim, Ji-Young;Lee, Kyung-Keun;Chung, Kyung-Yoon;Kim, Kwang-Bum
    • Journal of Electrochemical Science and Technology
    • /
    • 제1권1호
    • /
    • pp.45-49
    • /
    • 2010
  • $Li_2PtO_3$ thin film electrodes, which might be possible candidate for the cathode materials for implantable batteries, were synthesized using an electrostatic spray deposition (ESD) technique onto a platinum foil substrate. Single phase $Li_2PtO_3$with a structure similar to layered $LiCoO_2$ structure were synthesized by spraying a precursor solution of $CH_3CO_2Li2H_2O$ in ethanol onto a Pt substrate at temperatures ranging from 200 to $400^{\circ}C$ followed by annealing at above $600^{\circ}C$. Lithium carbonate was the only major phase at temperatures up to $500^{\circ}C$. The X-ray diffraction (XRD) peaks of the Pt foil substrate and lithium carbonate disappeared at temperatures >$600^{\circ}C$. The volumetric capacity of the $Li_2PtO_3$ thin film synthesized using the ESD technique was approximately 817 mAh/$cm^3$, which exceeded that of $LiCoO_2$ (711 mAh/$cm^3$).

Desmear 습식 표면 전처리가 무전해 도금된 Cu 박막과 FR-4 기판 사이의 계면 접착 기구에 미치는 영향 (Effect of Desmear Treatment on the Interfacial Bonding Mechanism of Electroless-Plated Cu film on FR-4 Substrate)

  • 민경진;박영배
    • 한국재료학회지
    • /
    • 제19권11호
    • /
    • pp.625-630
    • /
    • 2009
  • Embedding of active devices in a printed circuit board has increasingly been adopted as a future electronic technology due to its promotion of high density, high speed and high performance. One responsible technology is to embedded active device into a dielectric substrate with a build-up process, for example a chipin-substrate (CiS) structure. In this study, desmear treatment was performed before Cu metallization on an FR-4 surface in order to improve interfacial adhesion between electroless-plated Cu and FR-4 substrate in Cu via structures in CiS systems. Surface analyses using atomic force microscopy and x-ray photoemission spectroscopy were systematically performed to understand the fundamental adhesion mechanism; results were correlated with peel strength measured by a 90o peel test. Interfacial bonding mechanism between electrolessplated Cu and FR-4 substrate seems to be dominated by a chemical bonding effect resulting from the selective activation of chemical bonding between carbon and oxygen through a rearrangement of C-C bonding rather than from a mechanical interlocking effect. In fact, desmear wet treatment could result in extensive degradation of FR-4 cohesive strength when compared to dry surface-treated Cu/FR-4 structures.

저온 열처리 과정에서 일어나는 (0001) α-Al2O3 기판 표면의 형상 변화 (Surface Morphological Evolution of (0001) α-Al2O3 Substrate During Low Temperature Annealing)

  • 이근형
    • 한국전기전자재료학회논문지
    • /
    • 제23권11호
    • /
    • pp.859-863
    • /
    • 2010
  • Evolution of surface morphology of ${\alpha}-Al_2O_3$ substrate was investigated as a function of annealing temperature and time. Commercial (0001) ${\alpha}-Al_2O_3$ single crystal substrates were annealed in the range of $600-1000^{\circ}C$ in air. At $600^{\circ}C$, step-terrace structure started to be formed on the substrate. However, the surface roughness on the terrace was still considerable and a number of islands were observed on the step edges as well as the terraces. As the annealing temperature increased, the islands were absorbed into the step edges. Thus the terraces were smoother and the step edges were more straightened. Well-defined surface with a step height of 0.2 nm was formed above $900^{\circ}C$. On the other hand, when the substrate was annealed at a fixed temperature of $1000^{\circ}C$, the change of surface morphology was observed for the substrate annealed for 10 min. After the annealing for 30 min, the surface on which any islands could not survive was observed.

저온에서 증착한 CdSe막의 구조적 및 전기적 특성 (The Structural and Electrical Properties of CdSe Films Deposited at Low Temperature)

  • 박기철;마대영
    • 한국전기전자재료학회논문지
    • /
    • 제23권10호
    • /
    • pp.776-781
    • /
    • 2010
  • CdSe films were deposited on glass substrates (CdSe/glass) by thermal evaporation. Substrate temperature was lowered by cooling substrate holder with liquid nitrogen. Substrate temperatures were $200^{\circ}C$, $0^{\circ}C$ and $-40^{\circ}C$. The crystallographic properties and surface morphologies of the CdSe/glass films were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The optical and electrical properties of the films were investigated by dependence of energy gap, photosensitivity and resistivity on the substrate temperature. CdSe/glass showed energy gap of ~1.72 eV regardless of substrate temperature. The resistivity of the films decreased to $0.5{\Omega}cm$ by lowering the substrate temperature to $-40^{\circ}C$. The CdSe/glass films prepared at $0^{\circ}C$ showed the highest photosensitivity among the films in this study.

몰리브덴 기판 위에 고온 결정화된 다결정 실리콘 박막 트랜지스터 특성에 관한 연구 (High Temperature Crystallized Poly-Si on the Molybdenum Substrate for Thin Film Transistor Applications)

  • 박중현;김도영;고재경;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.202-205
    • /
    • 2002
  • Polycrystalline silicon thin film transistors (poly-Si TFTs) are used in a wide variety of applications, and will figure prominently future high-resolution, high-performance flat panel display technology However, it was very difficult to fabricate high performance poly-Si TFTs at a temperature lower than 300$^{\circ}C$ for glass substrate. Conventional process on a glass substrate were limited temperature less than 600$^{\circ}C$ This paper proposes a high temperature process above 750$^{\circ}C$ using a flexible molybdenum substrate deposited hydrogenated amorphous silicon (a-Si:H) and than crystallized a rapid thermal processor (RTP) at the various temperatures from 750$^{\circ}C$ to 1050$^{\circ}C$. The high temperature annealed poly-Si film illustrated field effect mobility higher than 30 $\textrm{cm}^2$/Vs, achieved I$\sub$on//I$\sub$off/ current ratio of 10$^4$ and crystall volume fraction of 92%. In this paper, we introduce the new TFTs Process as flexible substrate very promising roll-to-roll process, and exhibit the properties of high temperature crystallized poly-Si Tn on molybdenum substrate.

  • PDF