• Title/Summary/Keyword: substrate inhibition

Search Result 448, Processing Time 0.024 seconds

Xylan 분해균주인 Bacillus stearothermophilus의 오탄당 이용

  • 이효선;조쌍구;최용진
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.4
    • /
    • pp.385-392
    • /
    • 1996
  • Bacillus stearotheymophilus, a potent xylanolytic bacterium isolated from soil, was tested for the strain's strategies of pentose utilization and the evidence of substrate preferences. The strain metabolized glucose, xylose, ribose, maltose, cellobiose, sucrose, arabinose and xylitol. The efficacy of the sugars as a carbon and energy source in this strain was of the order named above. The organism, however, could not grow on glycerol as a sole growth substrate. During cultivation on a mixture of glucose and xylose or arabinose, the major hydrolytic products of xylan, B. stearothermophilus displayed classical diauxic growth in which glucose was utilized during the first phase. On the other hand, the pentose utilization was prevented immediately upon addition of glucose. Cellobiose was preferred over xylose or arabinose. In contrast, maltose and pentose were co-utilized, and also no preference on between xylose and arabinose. Enzymatic studies indicated that B. stearothermophilus possessed constitutive hexokinase, a key enzyme of the glucose metabolic system. While, the production of $^{D}$-xylose isomerase, $^{D}$-xylulokinase and $^{D}$-arabinose isomerase essential for pentose phosphate pathway were induced by xylose, xylan, and xylitol but repressed by glucose. Taken together, the results suggested that the sequential utilization of B. stearothermophilus would be mediated by catabolite regulatory mechanisms such as catabolite inhibition or inducer exclusion.

  • PDF

Enzymatic Hydrolysis of Pretreated Chitin by Aspergillus carneus Chitinase

  • Mohamed, Abdel-Naby;Kwon, Dae-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.197-203
    • /
    • 1992
  • Studies of the pretreatment of chitin and its subsequent hydrolysis by Aspergillus carneus chitinase are reported. Ball milling was found to be the most effective way among the pretreatment methods tested. Data are presented describing the effect of enzyme and substrate concentrations on the rate and extent of the hydrolysis process. It was found that the successive addition of enzyme improved the saccharification yield. Significant product inhibition of the chitinase was observed when N-acetylglucosamine concentration was 3.6% or higher. Adsorption of enzymes to the substrate occurred during a 24 hr hydrolysis period. An initial rapid and extensive adsorption occurred, followed by gradual desorption which increased during the time of reaction. Intermediate removal of the hydrolyzate and continuation of the hydrolysis by adsorbed enzyme on the residual chitin was also investigated. A total of 75.4 g/l reducing sugars, corresponding to 69.2% saccharificaton yield (as N-acetylglucosamine) was obtained. In addition an increase in the amount of recoverable enzymes was observed under these conditions. Evidence presented here suggests that the technique, whereby the free enzymes in the recovered hydrolyzate are re-adsorbed onto the new substrate, may provide a means of recirculating the dissolved enzymes.

  • PDF

Studies on Adenosine Triphosphate - Creatine Phosphotransferase from Muscle of the Snake Bungarus fasciatus (뱀 근육(筋肉) Adenosine Triphosphate - Creatine Phosphotransferase에 관(關)한 연구(硏究))

  • Park, Chung-Ung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.9 no.1
    • /
    • pp.59-73
    • /
    • 1980
  • A detailed procedure was described for the isolation of cratine kinase (ATP-Creatine phosphotransferase, E. C. 2. 7. 3. 2.) from the muscle of the snake Bungarus fasciatus. The original isolation procedure of Kuby et al. for the rabbit muscle enzyme has been modified and extended to include a chromatographic step. The properties of the enzyme have been investigated and kinetic constants for the reverse reactions determined as the followings: 1) A molecular weight of the enzyme was determined by gel filteration on Sephadex G-100 and by electrophoresis on SDS-polyacrylamide was 86,000. 2) Two reactive sulphydryl groups were detected with dithiobis nitrobenzoic acid (DTNB). 3) The nucleotide substrate specificity in the reverse reaction was determined as ADP*2'-dADP>GDP>XDP>UDP with magnesium as the activating metal ion. 4) The order of the metal specificity in the reverse reaction Mg>Mn>$Ca{\sim}Co$ was determined with ADP as substrate. 5) A detailed kinetic analysis was carried out in the reverse direction with $MaADP^-$ as the nucleotide substrate. Initial velocity and product inhibition studies($MaADP^{2-}$ competitive with respect to MgADP- and noncompetitive with respect to $N-phosphorycreatine^{2-}$ ; Creatine competitive with respect to $N-phosphorycreatine^{2-}$ and noncompetitive with respect to Ma $ADP^-)$ indicated that the reaction obeyed a sequential mechanism of the rapid equilibrium random type.

  • PDF

The Roles of Hydroxyl Substituents in Tyrosinase Inhibitory Activation of Flavone Analogues (Flavone 유도체들의 Tyrosinase 저해활성화 반응에서 Hydroxyl 치환기들의 역할)

  • Park, Joon-Ho;Sung, Nack-Do
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.1
    • /
    • pp.56-62
    • /
    • 2011
  • Molecular docking of polyhydroxy substituted flavone analogues (1-25) as substrate molecules to the active site of tyrosinase (PDB ID: Deoxy-form (2ZMX) & Oxy-form (1WX2)) and Free-Wilson analysis were studied to understand the roles of hydroxyl substituents ($R_1-R_9$) in substrate molecules for the tyrosinase inhibitory activation. It is founded from Free-Wilson analysis that the $R_1$=hydroxyl among $R_1-R_9$ substituents had the strongest influence on the tyrosinase inhibitory activity. H-bonds between the hydroxyl substituents of substrate molecules and amino acid residues in the active site of tyrosinase were contributed to make a stable substrate-receptor complex compound. Particularly, it is proposed from the findings that the noncompetitive inhibitory activation would take place via H-bonding between peroxide oxygen (Per404) atom in the active site of tyrosinase and the hydroxyl substituents in substrate molecule.

Purification of Aldose Reductase and Decolorization of Dye by the Enzyme

  • Jang, Mi;Kim, Kyung-Soon
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.4
    • /
    • pp.358-361
    • /
    • 2009
  • Aldose reductase was purified to electrophoretic homogeneity from porcine liver. The purified enzyme was a monomer of 36 kDa. The enzyme was strongly inhibited by $Cu^{2+}\;and\;Mg^{2+}$ ions. Incubation of the enzyme with pyridoxal 5'-phosphate led to complete inhibition of enzymatic activity, suggesting that lysine residue is involved at or near the active site of the enzyme. The enzyme exhibited a broad substrate specificity. Furthermore, the enzyme was capable of decolorizing Alizarin, an anthraquinone dye.

Screening of Microorganisms Having Inhibitory Activity against $\beta$-lactamase ($\beta$-Lactamase 저해능이 있는 방선균의 선별)

  • 강희일;김영일;박영주
    • YAKHAK HOEJI
    • /
    • v.28 no.2
    • /
    • pp.89-95
    • /
    • 1984
  • Microorganisms having beta-latamase inhibitory activity were selected from soil samples collected from 63 spots throughout the country. Screening procedures consist of two steps. Those are growth inhibition test of penicillinase-producing Staphylococcus aureus by double-layered agar plate containing penicillin G as a substrate, and that of penicillin sensitive Staphylococcus aureus ATCC 6538 in the similiar condition including penicillinase. Finally, a strain was selected from a soil sample of Pa-ju, Kyeong-gi Do. This strain was classified as a Streptomyces sp. by ISP(International Streptomycete Project) and Bergey's manual.

  • PDF

Cholesterol Biosynthesis from Lanosterol: Development of a Novel Assay Method, Characterization, and Solubilization of Rat Hepatic Microsomal Sterol Δ7-Reductase

  • Lee, Joon-No;Paik, Young-Ki
    • BMB Reports
    • /
    • v.30 no.5
    • /
    • pp.370-377
    • /
    • 1997
  • A novel assay method is described for rapid quantitation of reaction rate of sterol ${\Delta}^7$-reductase (${\Delta}^7$-SR) which catalyzes reduction of the ${\Delta}^7$-double bond of sterols. Of six different organ tissues-liver, small intestine, brain, lung, kidney, and testis-. ${\Delta}^7$-SR activity was detected only in liver (2.30 nmol/min/mg protein) and testis (0.11 nmol/min/mg protein). Using a newly developed method which employs diet-induced enzyme proteins and ergosterol as substrate, we assessed both kinetics ($K_m=210\;{\mu}M$, $V_{max}=1.93\;nmol/min/mg$) and inhibition of the rat hepatic ${\Delta}^7$-SR against well-studied cholesterol lowering agents such as triparanol ($IC_{50}=16\;{\mu}M$). 3-$\beta$-[2-(diethylamino)ethoxy]androst-5-en-17-one (U18666A) ($IC_{50}=5.2\;{\mu}M$), and trans-1.4-bis(2-chlorobenzylaminomethyl)cyclohexane dihydrochloride (AY-9944) ($IC_{50}=0.25\;{\mu}M$). Of the three well-known AY-9944-sensitive cholesterogenic enzymes (i.e., ${\Delta}^7$-SR, sterol ${\Delta}^8$-isomerase, and sterol ${\Delta}^14$-reductase). ${\Delta}^7$-SR was found to be the most sensitive enzyme with a noncompetitive inhibition of this compound ($K_i=0.109\;{\mu}M$). Substrate specificity studies of the microsomal ${\Delta}^7$-SR indicate that the relative reaction rate for 7-dehydrocholesterol and ergosterol are 5.6-fold and 1.6-fold higher than that for lathosterol. ${\Delta}^7$-SR activity was also modulated by feeding rats a diet supplemented with 0.5% ergosterol (>2.6-fold) in addition to 5.0% cholestyramine plus 0.1% lovastatin ($\simeq$5.0-fold). Finally, microsomal ${\Delta}^7$-SR was solubilized by 1.5% 3-[3-(cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS) and enriched on PEG (0~10%) precipitation, which should be suitable for further purification of the enzyme.

  • PDF

Functional analysis of Tyr7 residue in human glutathione S-transferase P1-1 (Human glutathione S-transferase 중 tyrosine 7 잔기의 기능 분석)

  • Kong, Kwang-Hoon;Park, Hee-Joong;Yoon, Suck-Young;Cho, Sung-Hee
    • Analytical Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.378-385
    • /
    • 1997
  • In order to clarify the functional role of Tyr7 in human glutathione S-transferase P1-1, we extensively investigated the effect of mutation of Tyr7 on the substrate specificity and inhibition characteristics. The mutational replacement of Tyr7 with phenylalanine lowered the specific activities with 1,2-dichloro-4-nitrobenzene and 1,2-epoxy-3-(p-nitrophenoxy) propane for GSH-conjugation reaction to 3~5% of the values for the wild-type enzyme. The pKa of the thiol group of GSH bound in Y7F was about 2.4 pK units higher than that in the wild-type enzyme. The $I_{50}$ of hematin for Y7F was similar to that for the wild-type enzyme and those of benastatin A and S-(2,4-dinitrophenyl)glutathione were only moderately decreased. These results suggest that Tyr7 is considered to be important the catalytic activities not only for GSH-chloronitrobenzene derivatives but also for GSH-epoxide conjugation reaction, rather than to binding of the substrates.

  • PDF

Glucose Effects on Cell Growth, Antibody Production, and Cell Metabolism of Hybridoma Cells (Hybridoma 세포의 세포성장, 항체생산 및 세포대사에 미치는 Glucose의 영향)

  • ;Shaw S.Wang
    • KSBB Journal
    • /
    • v.10 no.3
    • /
    • pp.323-334
    • /
    • 1995
  • The effects of glucose on cell growth kinetics, monoclonal antibody productivity, and cell metabolism or hybridoma cells were investigated. The mouse-mouse hybridoma cell line VIII H-8 producing mouse IgG2a was used as a modal system. Glucose showed substrate inhibition type dependence on specific growth raie. The maximum cell density increased as initial glucose concentration increased up to 4 g/$\ell$. Glucose showed a strong influence on cell death kinetics, and an inverse relationship between specific death rate and glucose concentration was found. Cell viability and monoclonal antibody production increased as initial glucose concentration increased. The specific glucose consumption rate increased with glucose concentration, and cumulative specific lactate production rate increased with increasing initial glucose concentration. The overall kinetics of ammonium ion production was almost invariant with respect to initial glucose concentration, while the cumulative specific ammonium ion production rate was dependent on initial glucose concentration.

  • PDF

Enzymatic Hydrolysis of Hydrophobic Triolein by Lipase in a Mone-phase Reaction System Containing Cyclodextrin; Reaction Characteristics

  • Lee, Yong-Hyun;Kim, Tae-Kwon;Shin, Hyun-Dong;Park, Dong-Chan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.2
    • /
    • pp.103-108
    • /
    • 1998
  • A hydrophobic substrate triolein was hydrolyzed by lipase in a mono-phase reaction system containing cyclodextrin(CD) as emulsifier. The triolein was transformation to an emulsion-like state in the CD containing reaction system in contrast to the oil-droplet like state without CD due to the formation of an inclusion complex between the lipids and CDs. The hydyrolysis reaction increased substantially in the CD containing reaction system, and the optimum reaction conditions including the amount of lipase, ${\beta}$-CD concentration, and mixing ratio of triolein and ${\beta}$-CD, were determined. The performance of the enzyme reaction in a mono-phase reaction system was compared with that of a two-phase reaction system which used water immiscible hexane as the organic solvent. The role of a CD in the mono-phase reaction system was elucidated by comparing the degree of the inclusion complex formation with triolein and oleic acid, Km and Vmax values, and product inhibition by oleic aicd in aqueous and CD containing reaction systems. The resulting enhanced reaction seems to be caused by two phenomena; the increased accessibility of lipase to triolein and reduced product inhibition by oleic acid through the formation of an inclusion complex.

  • PDF