• Title/Summary/Keyword: substrate binding

Search Result 437, Processing Time 0.028 seconds

Binding energy study from photocurrent signal in HgCdTe layers

  • Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.379-379
    • /
    • 2010
  • $Hg_{1_x}Cd_xTe$ (MCT) was grown by hot wall epitaxy. Prior to the MCT growth, the CdTe (111) buffer layer was grown on the GaAs substrate at the temperature of $590^{\circ}C$ for 15 min. When the thickness of the CdTe buffer layer was $5\;{\mu}m$ or thicker, the full width at half maximum values obtained from the x-ray rocking curves were found to significantly decrease. After a good quality CdTe buffer layer was grown, the MCT epilayers were grown on the CdTe (111) /GaAs substrate at various temperatures in situ. The crystal quality for those epilayers was investigated by means of the x-ray rocking curves and the photocurrent experiment. The photoconductor characterization for the epilayers was also measured. The energy band gap of MCT was determined from the photocurrent measurement and the x composition rates from the temperature dependence of the energy band gap were turned out.

  • PDF

뇌조직으로부터 정제한 Succinic semialdehyde reductase의 정제 및 활성기작 연구

  • 최수영;송민선;최의열;조성우
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.271-271
    • /
    • 1994
  • NADPH-dependent succinic semialdehyde reductase를 소의 뇌조직으로부터 여러가지 크로마토그래픽 방법을 이용하여 순수 분리 정제하였다. 효소는 분자량 34kDa을 가진 monomeric 단백질이며 substrate specificity. 분자량, 최적 pH, 아미노산 조성 등을 다른 sources의 효소들과 비교하였다. 이 비교 결과들로부터 본 연구에서 정제한 효소는 다른 sources와 다른 효소로 밝혀졌다. 반응의 산물이나 유사 기질 등을 저해제로 사용하였을때의 반응기작은 intermediate ternary complex를 형성하고 NADPH가 먼저 효소에 binding하는 ordered Sequencial mechanism을 보인다는 사실을 관찰할 수 있었다.

  • PDF

Aminoacyl-tRNA Synthetase Cofactor, p43, is a Novel Cytokine and an Immune Modulator: Implications for Autoimmune Diseases and Bacterial Infections

  • Kim, Sung-Hoon
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.77-77
    • /
    • 2003
  • p43 is a protein with complex biological activities. It is first found as a protein associated with macromolecular tRNA synthetase complex. Within this complex, p43 specifically interacts with arginyl-tRNA synthetase to help the substrate tRNA binding to the enzyme. It is also necessary for the cellular stability of arginyl-tRNA synthetase and the molecular association of a few complex-forming tRNA synthetases. (omitted)

  • PDF

Understanding the RNA-Specificity of HCV RdRp: Implications for Anti-HCV Drug Discovery

  • Kim, Jin-young;Chong, You-hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.59-64
    • /
    • 2006
  • Unlike other viral polymerases, HCV RNA-dependent RNA polymerase (RdRp) has not been successfully inhibited by nucleoside analogues presumably due to its strong substrate specificity for RNA. Thus, in order to understand the RNA-specificity of HCV RdRp, the structural characteristics of the active site was investigated. The hereto unknown 2-OH binding pocket at the active site of RdRp provides invaluable implication for the development of novel anti-HCV nucleoside analogues.

Bioanalytical Application of SERS Immunoassay for Detection of Prostate-Specific Antigen

  • Yoon, Kyung-Jin;Seo, Hyeong-Kuyn;Hwang, Hoon;Pyo, Dong-Jin;Eom, In-Yong;Hahn, Jong-Hoon;Jung, Young-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1215-1218
    • /
    • 2010
  • We demonstrate the possible application of the sandwich type surface-enhanced Raman scattering (SERS) immunoassay using antigen-antibody binding for detection of prostate-specific antigen (PSA) in cancer cells. In this sandwich type of SERS immunoassay, to capture antigens onto the immobilized layer of antibodies on the gold substrate we prepared the monolayer of gold nanoparticles on the APTMS-derivatized surface of a glass slide by using the SAM technique. This sandwich type of SERS immunoassay in which antigens on the substrate specifically capture antibodies on a Raman reporter (DSNB coated gold nanoparticles with R6G) could successfully detect PSA at low levels. A strong SERS spectrum of Raman reporter was observed only with a substrate in which PSA is present.

Crystal Structure of Acyl-CoA Oxidase 3 from Yarrowia lipolytica with Specificity for Short-Chain Acyl-CoA

  • Kim, Sangwoo;Kim, Kyung-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.597-605
    • /
    • 2018
  • Acyl-CoA oxidases (ACOXs) play important roles in lipid metabolism, including peroxisomal fatty acid ${\beta}$-oxidation by the conversion of acyl-CoAs to 2-trans-enoyl-CoAs. The yeast Yarrowia lipolytica can utilize fatty acids as a carbon source and thus has extensive biotechnological applications. The crystal structure of ACOX3 from Y. lipolytica (YlACOX3) was determined at a resolution of $2.5{\AA}$. It contained two molecules per asymmetric unit, and the monomeric structure was folded into four domains; $N{\alpha}$, $N{\beta}$, $C{\alpha}1$, and $C{\alpha}2$ domains. The cofactor flavin adenine dinucleotide was bound in the dimer interface. The substrate-binding pocket was located near the cofactor, and formed at the interface between the $N{\alpha}$, $N{\beta}$, and $C{\alpha}1$ domains. Comparisons with other ACOX structures provided structural insights into how YlACOX has a substrate preference for short-chain acyl-CoA. In addition, the structure of YlACOX3 was compared with those of medium- and long-chain ACOXs, and the structural basis for their differences in substrate specificity was discussed.

Crystal Structure and Biochemical Characterization of Xylose Isomerase from Piromyces sp. E2

  • Son, Hyeoncheol Francis;Lee, Sun-Mi;Kim, Kyung-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.571-578
    • /
    • 2018
  • Biofuel production using lignocellulosic biomass is gaining attention because it can be substituted for fossil fuels without competing with edible resources. However, because Saccharomyces cerevisiae does not have a ${\text\tiny{D}}$-xylose metabolic pathway, oxidoreductase or isomerase pathways must be introduced to utilize ${\text\tiny{D}}$-xylose from lignocellulosic biomass in S. cerevisiae. To elucidate the biochemical properties of xylose isomerase (XI) from Piromyces sp. E2 (PsXI), we determine its crystal structure in complex with substrate mimic glycerol. An amino-acid sequence comparison with other reported XIs and relative activity measurements using five kinds of divalent metal ions confirmed that PsXI belongs to class II XIs. Moreover kinetic analysis of PsXI was also performed using $Mn^{2+}$, the preferred divalent metal ion for PsXI. In addition, the substrate-binding mode of PsXI could be predicted with the substrate mimic glycerol bound to the active site. These studies may provide structural information to enhance ${\text\tiny{D}}$-xylose utilization for biofuel production.

Characterization of the Catalytic Properties of Recombinant Acetohydroxyacid Synthase from Tobacco

  • Kim, Joung-Mok;Choi, Jung-Do;Kim, Bok-Hwan;Yoon, Moon-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.260-264
    • /
    • 2005
  • The nature of the active site of Tobacco acetohydroxyacid synthase (AHAS) in the substrate- and cofactorbinding was studied by kinetics and fluorescence spectroscopy. The substrate saturation curve does not follow Michaelis-Menten kinetics at different temperatures (7, 21 and 37 ${^{\circ}C}$), pH (6.5, 7.5 and 8.5) and buffers (Tris-HCl and MOPS). The concentration of one half of the maximum velocity ($S_{0.5}$) decreased in the following order: pyruvate $\gt$ ThDP $\approx$$Mg^{+2}$ $\gt$ FAD. However, the catalytic efficiency (K$_{cat}/S_{0.5}$) inversely decreased in the following order; FAD $\gt$ $Mg^{+2}$ $\approx$ThDP $\gt$ pyruvate, indicating that the cofactors by in decreasing order; FAD, $Mg^{+2}$, ThDP, affect the catalysis of AHAS. The dissociation constant ($K_d$) of the intrinsic tryptophan fluorescence decreased with the same tendency of the concentration of one half of the maximum velocity ($S_{0.5}$) decreasing order. This data provides evidence that the substrate and cofactor binding natures of the active site, as well as its activation characteristics, resemble those of other ThDP-dependent enzymes.

Solution Conformations of the Substrates and Inhibitor of Hepatitis C Virus NS3 Protease

  • 이정훈;방근수;정진원;안인애;노성구;이원태
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.301-306
    • /
    • 1999
  • Hepatitis C virus (HCV) has been known to be an enveloped virus with a positive strand RNA genome and the major agent of the vast majority of transfusion associated cases of hepatitis. For viral replication, HCV structural proteins are first processed by host cell signal peptidases and NS2/NS3 site of the nonstructural protein is cleaved by a zinc-dependent protease NS2 with N-terminal NS3. The four remaining junctions are cleaved by a separate NS3 protease. The solution conformations of NS4B/5A, NS5A/5B substrates and NS5A/5B inhibitor have been determined by two-dimensional nuclear magnetic resonance (NMR) spectroscopy. NMR data suggested that the both NS5A/5B substrate and inhibitor appeared to have a folded tum-like conformation not only between P1 and P6 position but also C-terminal region, whereas the NS4B/5A substrate exhibited mostly extended conformation. In addition, we have found that the conformation of the NS5A/5B inhibitor slightly differs from that of NS5A/5B substrate peptide, suggesting different binding mode for NS3 protease. These findings will be of importance for designing efficient inhibitor to suppress HCV processing.

Crystal Structure and Biochemical Analysis of a Cytochrome P450 Steroid Hydroxylase (BaCYP106A6) from Bacillus Species

  • Ki-Hwa Kim;Hackwon Do;Chang Woo Lee;Pradeep Subedi;Mieyoung Choi;Yewon Nam;Jun Hyuck Lee;Tae-Jin Oh
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.387-397
    • /
    • 2023
  • Cytochrome P450 (CYP) is a heme-containing enzyme that catalyzes hydroxylation reactions with various substrate molecules. Steroid hydroxylases are particularly useful for effectively introducing hydroxyl groups into a wide range of steroids in the pharmaceutical industry. This study reports a newly identified CYP steroid hydroxylase (BaCYP106A6) from the bacterium Bacillus sp. and characterizes it using an in vitro enzyme assay and structural investigation. Bioconversion assays indicated that BaCYP106A1 catalyzes the hydroxylation of progesterone and androstenedione, whereas no or low conversion was observed with 11β-hydroxysteroids such as cortisol, corticosterone, dexamethasone, and prednisolone. In addition, the crystal structure of BaCYP106A6 was determined at a resolution of 2.8 Å to investigate the configuration of the substrate-binding site and understand substrate preference. This structural characterization and comparison with other bacterial steroid hydroxylase CYPs allowed us to identify a unique Arg295 residue that may serve as the key residue for substrate specificity and regioselectivity in BaCYP106A6. This observation provides valuable background for further protein engineering to design commercially useful CYP steroid hydroxylases with different substrate specificities.